1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
/*!
Provides [`Automaton`] trait for abstracting over Aho-Corasick automata.

The `Automaton` trait provides a way to write generic code over any
Aho-Corasick automaton. It also provides access to lower level APIs that
permit walking the state transitions of an Aho-Corasick automaton manually.
*/

use alloc::{string::String, vec::Vec};

use crate::util::{
    error::MatchError,
    primitives::PatternID,
    search::{Anchored, Input, Match, MatchKind, Span},
};

pub use crate::util::{
    prefilter::{Candidate, Prefilter},
    primitives::{StateID, StateIDError},
};

/// We seal the `Automaton` trait for now. It's a big trait, and it's
/// conceivable that I might want to add new required methods, and sealing the
/// trait permits doing that in a backwards compatible fashion. On other the
/// hand, if you have a solid use case for implementing the trait yourself,
/// please file an issue and we can discuss it. This was *mostly* done as a
/// conservative step.
pub(crate) mod private {
    pub trait Sealed {}
}
impl private::Sealed for crate::nfa::noncontiguous::NFA {}
impl private::Sealed for crate::nfa::contiguous::NFA {}
impl private::Sealed for crate::dfa::DFA {}

impl<'a, T: private::Sealed + ?Sized> private::Sealed for &'a T {}

/// A trait that abstracts over Aho-Corasick automata.
///
/// This trait primarily exists for niche use cases such as:
///
/// * Using an NFA or DFA directly, bypassing the top-level
/// [`AhoCorasick`](crate::AhoCorasick) searcher. Currently, these include
/// [`noncontiguous::NFA`](crate::nfa::noncontiguous::NFA),
/// [`contiguous::NFA`](crate::nfa::contiguous::NFA) and
/// [`dfa::DFA`](crate::dfa::DFA).
/// * Implementing your own custom search routine by walking the automaton
/// yourself. This might be useful for implementing search on non-contiguous
/// strings or streams.
///
/// For most use cases, it is not expected that users will need
/// to use or even know about this trait. Indeed, the top level
/// [`AhoCorasick`](crate::AhoCorasick) searcher does not expose any details
/// about this trait, nor does it implement it itself.
///
/// Note that this trait defines a number of default methods, such as
/// [`Automaton::try_find`] and [`Automaton::try_find_iter`], which implement
/// higher level search routines in terms of the lower level automata API.
///
/// # Sealed
///
/// Currently, this trait is sealed. That means users of this crate can write
/// generic routines over this trait but cannot implement it themselves. This
/// restriction may be lifted in the future, but sealing the trait permits
/// adding new required methods in a backwards compatible fashion.
///
/// # Special states
///
/// This trait encodes a notion of "special" states in an automaton. Namely,
/// a state is treated as special if it is a dead, match or start state:
///
/// * A dead state is a state that cannot be left once entered. All transitions
/// on a dead state lead back to itself. The dead state is meant to be treated
/// as a sentinel indicating that the search should stop and return a match if
/// one has been found, and nothing otherwise.
/// * A match state is a state that indicates one or more patterns have
/// matched. Depending on the [`MatchKind`] of the automaton, a search may
/// stop once a match is seen, or it may continue looking for matches until
/// it enters a dead state or sees the end of the haystack.
/// * A start state is a state that a search begins in. It is useful to know
/// when a search enters a start state because it may mean that a prefilter can
/// be used to skip ahead and quickly look for candidate matches. Unlike dead
/// and match states, it is never necessary to explicitly handle start states
/// for correctness. Indeed, in this crate, implementations of `Automaton`
/// will only treat start states as "special" when a prefilter is enabled and
/// active. Otherwise, treating it as special has no purpose and winds up
/// slowing down the overall search because it results in ping-ponging between
/// the main state transition and the "special" state logic.
///
/// Since checking whether a state is special by doing three different
/// checks would be too expensive inside a fast search loop, the
/// [`Automaton::is_special`] method is provided for quickly checking whether
/// the state is special. The `Automaton::is_dead`, `Automaton::is_match` and
/// `Automaton::is_start` predicates can then be used to determine which kind
/// of special state it is.
///
/// # Panics
///
/// Most of the APIs on this trait should panic or give incorrect results
/// if invalid inputs are given to it. For example, `Automaton::next_state`
/// has unspecified behavior if the state ID given to it is not a valid
/// state ID for the underlying automaton. Valid state IDs can only be
/// retrieved in one of two ways: calling `Automaton::start_state` or calling
/// `Automaton::next_state` with a valid state ID.
///
/// # Safety
///
/// This trait is not safe to implement so that code may rely on the
/// correctness of implementations of this trait to avoid undefined behavior.
/// The primary correctness guarantees are:
///
/// * `Automaton::start_state` always returns a valid state ID or an error or
/// panics.
/// * `Automaton::next_state`, when given a valid state ID, always returns
/// a valid state ID for all values of `anchored` and `byte`, or otherwise
/// panics.
///
/// In general, the rest of the methods on `Automaton` need to uphold their
/// contracts as well. For example, `Automaton::is_dead` should only returns
/// true if the given state ID is actually a dead state.
///
/// Note that currently this crate does not rely on the safety property defined
/// here to avoid undefined behavior. Instead, this was done to make it
/// _possible_ to do in the future.
///
/// # Example
///
/// This example shows how one might implement a basic but correct search
/// routine. We keep things simple by not using prefilters or worrying about
/// anchored searches, but do make sure our search is correct for all possible
/// [`MatchKind`] semantics. (The comments in the code below note the parts
/// that are needed to support certain `MatchKind` semantics.)
///
/// ```
/// use aho_corasick::{
///     automaton::Automaton,
///     nfa::noncontiguous::NFA,
///     Anchored, Match, MatchError, MatchKind,
/// };
///
/// // Run an unanchored search for 'aut' in 'haystack'. Return the first match
/// // seen according to the automaton's match semantics. This returns an error
/// // if the given automaton does not support unanchored searches.
/// fn find<A: Automaton>(
///     aut: A,
///     haystack: &[u8],
/// ) -> Result<Option<Match>, MatchError> {
///     let mut sid = aut.start_state(Anchored::No)?;
///     let mut at = 0;
///     let mut mat = None;
///     let get_match = |sid, at| {
///         let pid = aut.match_pattern(sid, 0);
///         let len = aut.pattern_len(pid);
///         Match::new(pid, (at - len)..at)
///     };
///     // Start states can be match states!
///     if aut.is_match(sid) {
///         mat = Some(get_match(sid, at));
///         // Standard semantics require matches to be reported as soon as
///         // they're seen. Otherwise, we continue until we see a dead state
///         // or the end of the haystack.
///         if matches!(aut.match_kind(), MatchKind::Standard) {
///             return Ok(mat);
///         }
///     }
///     while at < haystack.len() {
///         sid = aut.next_state(Anchored::No, sid, haystack[at]);
///         if aut.is_special(sid) {
///             if aut.is_dead(sid) {
///                 return Ok(mat);
///             } else if aut.is_match(sid) {
///                 mat = Some(get_match(sid, at + 1));
///                 // As above, standard semantics require that we return
///                 // immediately once a match is found.
///                 if matches!(aut.match_kind(), MatchKind::Standard) {
///                     return Ok(mat);
///                 }
///             }
///         }
///         at += 1;
///     }
///     Ok(mat)
/// }
///
/// // Show that it works for standard searches.
/// let nfa = NFA::new(&["samwise", "sam"]).unwrap();
/// assert_eq!(Some(Match::must(1, 0..3)), find(&nfa, b"samwise")?);
///
/// // But also works when using leftmost-first. Notice how the match result
/// // has changed!
/// let nfa = NFA::builder()
///     .match_kind(MatchKind::LeftmostFirst)
///     .build(&["samwise", "sam"])
///     .unwrap();
/// assert_eq!(Some(Match::must(0, 0..7)), find(&nfa, b"samwise")?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub unsafe trait Automaton: private::Sealed {
    /// Returns the starting state for the given anchor mode.
    ///
    /// Upon success, the state ID returned is guaranteed to be valid for
    /// this automaton.
    ///
    /// # Errors
    ///
    /// This returns an error when the given search configuration is not
    /// supported by the underlying automaton. For example, if the underlying
    /// automaton only supports unanchored searches but the given configuration
    /// was set to an anchored search, then this must return an error.
    fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError>;

    /// Performs a state transition from `sid` for `byte` and returns the next
    /// state.
    ///
    /// `anchored` should be [`Anchored::Yes`] when executing an anchored
    /// search and [`Anchored::No`] otherwise. For some implementations of
    /// `Automaton`, it is required to know whether the search is anchored
    /// or not in order to avoid following failure transitions. Other
    /// implementations may ignore `anchored` altogether and depend on
    /// `Automaton::start_state` returning a state that walks a different path
    /// through the automaton depending on whether the search is anchored or
    /// not.
    ///
    /// # Panics
    ///
    /// This routine may panic or return incorrect results when the given state
    /// ID is invalid. A state ID is valid if and only if:
    ///
    /// 1. It came from a call to `Automaton::start_state`, or
    /// 2. It came from a previous call to `Automaton::next_state` with a
    /// valid state ID.
    ///
    /// Implementations must treat all possible values of `byte` as valid.
    ///
    /// Implementations may panic on unsupported values of `anchored`, but are
    /// not required to do so.
    fn next_state(
        &self,
        anchored: Anchored,
        sid: StateID,
        byte: u8,
    ) -> StateID;

    /// Returns true if the given ID represents a "special" state. A special
    /// state is a dead, match or start state.
    ///
    /// Note that implementations may choose to return false when the given ID
    /// corresponds to a start state. Namely, it always correct to treat start
    /// states as non-special. Implementations must return true for states that
    /// are dead or contain matches.
    ///
    /// This has unspecified behavior when given an invalid state ID.
    fn is_special(&self, sid: StateID) -> bool;

    /// Returns true if the given ID represents a dead state.
    ///
    /// A dead state is a type of "sink" in a finite state machine. It
    /// corresponds to a state whose transitions all loop back to itself. That
    /// is, once entered, it can never be left. In practice, it serves as a
    /// sentinel indicating that the search should terminate.
    ///
    /// This has unspecified behavior when given an invalid state ID.
    fn is_dead(&self, sid: StateID) -> bool;

    /// Returns true if the given ID represents a match state.
    ///
    /// A match state is always associated with one or more pattern IDs that
    /// matched at the position in the haystack when the match state was
    /// entered. When a match state is entered, the match semantics dictate
    /// whether it should be returned immediately (for `MatchKind::Standard`)
    /// or if the search should continue (for `MatchKind::LeftmostFirst` and
    /// `MatchKind::LeftmostLongest`) until a dead state is seen or the end of
    /// the haystack has been reached.
    ///
    /// This has unspecified behavior when given an invalid state ID.
    fn is_match(&self, sid: StateID) -> bool;

    /// Returns true if the given ID represents a start state.
    ///
    /// While it is never incorrect to ignore start states during a search
    /// (except for the start of the search of course), knowing whether one has
    /// entered a start state can be useful for certain classes of performance
    /// optimizations. For example, if one is in a start state, it may be legal
    /// to try to skip ahead and look for match candidates more quickly than
    /// would otherwise be accomplished by walking the automaton.
    ///
    /// Implementations of `Automaton` in this crate "unspecialize" start
    /// states when a prefilter is not active or enabled. In this case, it
    /// is possible for `Automaton::is_special(sid)` to return false while
    /// `Automaton::is_start(sid)` returns true.
    ///
    /// This has unspecified behavior when given an invalid state ID.
    fn is_start(&self, sid: StateID) -> bool;

    /// Returns the match semantics that this automaton was built with.
    fn match_kind(&self) -> MatchKind;

    /// Returns the total number of matches for the given state ID.
    ///
    /// This has unspecified behavior if the given ID does not refer to a match
    /// state.
    fn match_len(&self, sid: StateID) -> usize;

    /// Returns the pattern ID for the match state given by `sid` at the
    /// `index` given.
    ///
    /// Typically, `index` is only ever greater than `0` when implementing an
    /// overlapping search. Otherwise, it's likely that your search only cares
    /// about reporting the first pattern ID in a match state.
    ///
    /// This has unspecified behavior if the given ID does not refer to a match
    /// state, or if the index is greater than or equal to the total number of
    /// matches in this match state.
    fn match_pattern(&self, sid: StateID, index: usize) -> PatternID;

    /// Returns the total number of patterns compiled into this automaton.
    fn patterns_len(&self) -> usize;

    /// Returns the length of the pattern for the given ID.
    ///
    /// This has unspecified behavior when given an invalid pattern
    /// ID. A pattern ID is valid if and only if it is less than
    /// `Automaton::patterns_len`.
    fn pattern_len(&self, pid: PatternID) -> usize;

    /// Returns the length, in bytes, of the shortest pattern in this
    /// automaton.
    fn min_pattern_len(&self) -> usize;

    /// Returns the length, in bytes, of the longest pattern in this automaton.
    fn max_pattern_len(&self) -> usize;

    /// Returns the heap memory usage, in bytes, used by this automaton.
    fn memory_usage(&self) -> usize;

    /// Returns a prefilter, if available, that can be used to accelerate
    /// searches for this automaton.
    ///
    /// The typical way this is used is when the start state is entered during
    /// a search. When that happens, one can use a prefilter to skip ahead and
    /// look for candidate matches without having to walk the automaton on the
    /// bytes between candidates.
    ///
    /// Typically a prefilter is only available when there are a small (<100)
    /// number of patterns built into the automaton.
    fn prefilter(&self) -> Option<&Prefilter>;

    /// Executes a non-overlapping search with this automaton using the given
    /// configuration.
    ///
    /// See
    /// [`AhoCorasick::try_find`](crate::AhoCorasick::try_find)
    /// for more documentation and examples.
    fn try_find(
        &self,
        input: &Input<'_>,
    ) -> Result<Option<Match>, MatchError> {
        try_find_fwd(&self, input)
    }

    /// Executes a overlapping search with this automaton using the given
    /// configuration.
    ///
    /// See
    /// [`AhoCorasick::try_find_overlapping`](crate::AhoCorasick::try_find_overlapping)
    /// for more documentation and examples.
    fn try_find_overlapping(
        &self,
        input: &Input<'_>,
        state: &mut OverlappingState,
    ) -> Result<(), MatchError> {
        try_find_overlapping_fwd(&self, input, state)
    }

    /// Returns an iterator of non-overlapping matches with this automaton
    /// using the given configuration.
    ///
    /// See
    /// [`AhoCorasick::try_find_iter`](crate::AhoCorasick::try_find_iter)
    /// for more documentation and examples.
    fn try_find_iter<'a, 'h>(
        &'a self,
        input: Input<'h>,
    ) -> Result<FindIter<'a, 'h, Self>, MatchError>
    where
        Self: Sized,
    {
        FindIter::new(self, input)
    }

    /// Returns an iterator of overlapping matches with this automaton
    /// using the given configuration.
    ///
    /// See
    /// [`AhoCorasick::try_find_overlapping_iter`](crate::AhoCorasick::try_find_overlapping_iter)
    /// for more documentation and examples.
    fn try_find_overlapping_iter<'a, 'h>(
        &'a self,
        input: Input<'h>,
    ) -> Result<FindOverlappingIter<'a, 'h, Self>, MatchError>
    where
        Self: Sized,
    {
        if !self.match_kind().is_standard() {
            return Err(MatchError::unsupported_overlapping(
                self.match_kind(),
            ));
        }
        //  We might consider lifting this restriction. The reason why I added
        // it was to ban the combination of "anchored search" and "overlapping
        // iteration." The match semantics aren't totally clear in that case.
        // Should we allow *any* matches that are adjacent to *any* previous
        // match? Or only following the most recent one? Or only matches
        // that start at the beginning of the search? We might also elect to
        // just keep this restriction in place, as callers should be able to
        // implement it themselves if they want to.
        if input.get_anchored().is_anchored() {
            return Err(MatchError::invalid_input_anchored());
        }
        let _ = self.start_state(input.get_anchored())?;
        let state = OverlappingState::start();
        Ok(FindOverlappingIter { aut: self, input, state })
    }

    /// Replaces all non-overlapping matches in `haystack` with
    /// strings from `replace_with` depending on the pattern that
    /// matched. The `replace_with` slice must have length equal to
    /// `Automaton::patterns_len`.
    ///
    /// See
    /// [`AhoCorasick::try_replace_all`](crate::AhoCorasick::try_replace_all)
    /// for more documentation and examples.
    fn try_replace_all<B>(
        &self,
        haystack: &str,
        replace_with: &[B],
    ) -> Result<String, MatchError>
    where
        Self: Sized,
        B: AsRef<str>,
    {
        assert_eq!(
            replace_with.len(),
            self.patterns_len(),
            "replace_all requires a replacement for every pattern \
             in the automaton"
        );
        let mut dst = String::with_capacity(haystack.len());
        self.try_replace_all_with(haystack, &mut dst, |mat, _, dst| {
            dst.push_str(replace_with[mat.pattern()].as_ref());
            true
        })?;
        Ok(dst)
    }

    /// Replaces all non-overlapping matches in `haystack` with
    /// strings from `replace_with` depending on the pattern that
    /// matched. The `replace_with` slice must have length equal to
    /// `Automaton::patterns_len`.
    ///
    /// See
    /// [`AhoCorasick::try_replace_all_bytes`](crate::AhoCorasick::try_replace_all_bytes)
    /// for more documentation and examples.
    fn try_replace_all_bytes<B>(
        &self,
        haystack: &[u8],
        replace_with: &[B],
    ) -> Result<Vec<u8>, MatchError>
    where
        Self: Sized,
        B: AsRef<[u8]>,
    {
        assert_eq!(
            replace_with.len(),
            self.patterns_len(),
            "replace_all requires a replacement for every pattern \
             in the automaton"
        );
        let mut dst = Vec::with_capacity(haystack.len());
        self.try_replace_all_with_bytes(haystack, &mut dst, |mat, _, dst| {
            dst.extend(replace_with[mat.pattern()].as_ref());
            true
        })?;
        Ok(dst)
    }

    /// Replaces all non-overlapping matches in `haystack` by calling the
    /// `replace_with` closure given.
    ///
    /// See
    /// [`AhoCorasick::try_replace_all_with`](crate::AhoCorasick::try_replace_all_with)
    /// for more documentation and examples.
    fn try_replace_all_with<F>(
        &self,
        haystack: &str,
        dst: &mut String,
        mut replace_with: F,
    ) -> Result<(), MatchError>
    where
        Self: Sized,
        F: FnMut(&Match, &str, &mut String) -> bool,
    {
        let mut last_match = 0;
        for m in self.try_find_iter(Input::new(haystack))? {
            // Since there are no restrictions on what kinds of patterns are
            // in an Aho-Corasick automaton, we might get matches that split
            // a codepoint, or even matches of a partial codepoint. When that
            // happens, we just skip the match.
            if !haystack.is_char_boundary(m.start())
                || !haystack.is_char_boundary(m.end())
            {
                continue;
            }
            dst.push_str(&haystack[last_match..m.start()]);
            last_match = m.end();
            if !replace_with(&m, &haystack[m.start()..m.end()], dst) {
                break;
            };
        }
        dst.push_str(&haystack[last_match..]);
        Ok(())
    }

    /// Replaces all non-overlapping matches in `haystack` by calling the
    /// `replace_with` closure given.
    ///
    /// See
    /// [`AhoCorasick::try_replace_all_with_bytes`](crate::AhoCorasick::try_replace_all_with_bytes)
    /// for more documentation and examples.
    fn try_replace_all_with_bytes<F>(
        &self,
        haystack: &[u8],
        dst: &mut Vec<u8>,
        mut replace_with: F,
    ) -> Result<(), MatchError>
    where
        Self: Sized,
        F: FnMut(&Match, &[u8], &mut Vec<u8>) -> bool,
    {
        let mut last_match = 0;
        for m in self.try_find_iter(Input::new(haystack))? {
            dst.extend(&haystack[last_match..m.start()]);
            last_match = m.end();
            if !replace_with(&m, &haystack[m.start()..m.end()], dst) {
                break;
            };
        }
        dst.extend(&haystack[last_match..]);
        Ok(())
    }

    /// Returns an iterator of non-overlapping matches with this automaton
    /// from the stream given.
    ///
    /// See
    /// [`AhoCorasick::try_stream_find_iter`](crate::AhoCorasick::try_stream_find_iter)
    /// for more documentation and examples.
    #[cfg(feature = "std")]
    fn try_stream_find_iter<'a, R: std::io::Read>(
        &'a self,
        rdr: R,
    ) -> Result<StreamFindIter<'a, Self, R>, MatchError>
    where
        Self: Sized,
    {
        Ok(StreamFindIter { it: StreamChunkIter::new(self, rdr)? })
    }

    /// Replaces all non-overlapping matches in `rdr` with strings from
    /// `replace_with` depending on the pattern that matched, and writes the
    /// result to `wtr`. The `replace_with` slice must have length equal to
    /// `Automaton::patterns_len`.
    ///
    /// See
    /// [`AhoCorasick::try_stream_replace_all`](crate::AhoCorasick::try_stream_replace_all)
    /// for more documentation and examples.
    #[cfg(feature = "std")]
    fn try_stream_replace_all<R, W, B>(
        &self,
        rdr: R,
        wtr: W,
        replace_with: &[B],
    ) -> std::io::Result<()>
    where
        Self: Sized,
        R: std::io::Read,
        W: std::io::Write,
        B: AsRef<[u8]>,
    {
        assert_eq!(
            replace_with.len(),
            self.patterns_len(),
            "streaming replace_all requires a replacement for every pattern \
             in the automaton",
        );
        self.try_stream_replace_all_with(rdr, wtr, |mat, _, wtr| {
            wtr.write_all(replace_with[mat.pattern()].as_ref())
        })
    }

    /// Replaces all non-overlapping matches in `rdr` by calling the
    /// `replace_with` closure given and writing the result to `wtr`.
    ///
    /// See
    /// [`AhoCorasick::try_stream_replace_all_with`](crate::AhoCorasick::try_stream_replace_all_with)
    /// for more documentation and examples.
    #[cfg(feature = "std")]
    fn try_stream_replace_all_with<R, W, F>(
        &self,
        rdr: R,
        mut wtr: W,
        mut replace_with: F,
    ) -> std::io::Result<()>
    where
        Self: Sized,
        R: std::io::Read,
        W: std::io::Write,
        F: FnMut(&Match, &[u8], &mut W) -> std::io::Result<()>,
    {
        let mut it = StreamChunkIter::new(self, rdr).map_err(|e| {
            let kind = std::io::ErrorKind::Other;
            std::io::Error::new(kind, e)
        })?;
        while let Some(result) = it.next() {
            let chunk = result?;
            match chunk {
                StreamChunk::NonMatch { bytes, .. } => {
                    wtr.write_all(bytes)?;
                }
                StreamChunk::Match { bytes, mat } => {
                    replace_with(&mat, bytes, &mut wtr)?;
                }
            }
        }
        Ok(())
    }
}

// SAFETY: This just defers to the underlying 'AcAutomaton' and thus inherits
// its safety properties.
unsafe impl<'a, A: Automaton + ?Sized> Automaton for &'a A {
    #[inline(always)]
    fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
        (**self).start_state(anchored)
    }

    #[inline(always)]
    fn next_state(
        &self,
        anchored: Anchored,
        sid: StateID,
        byte: u8,
    ) -> StateID {
        (**self).next_state(anchored, sid, byte)
    }

    #[inline(always)]
    fn is_special(&self, sid: StateID) -> bool {
        (**self).is_special(sid)
    }

    #[inline(always)]
    fn is_dead(&self, sid: StateID) -> bool {
        (**self).is_dead(sid)
    }

    #[inline(always)]
    fn is_match(&self, sid: StateID) -> bool {
        (**self).is_match(sid)
    }

    #[inline(always)]
    fn is_start(&self, sid: StateID) -> bool {
        (**self).is_start(sid)
    }

    #[inline(always)]
    fn match_kind(&self) -> MatchKind {
        (**self).match_kind()
    }

    #[inline(always)]
    fn match_len(&self, sid: StateID) -> usize {
        (**self).match_len(sid)
    }

    #[inline(always)]
    fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
        (**self).match_pattern(sid, index)
    }

    #[inline(always)]
    fn patterns_len(&self) -> usize {
        (**self).patterns_len()
    }

    #[inline(always)]
    fn pattern_len(&self, pid: PatternID) -> usize {
        (**self).pattern_len(pid)
    }

    #[inline(always)]
    fn min_pattern_len(&self) -> usize {
        (**self).min_pattern_len()
    }

    #[inline(always)]
    fn max_pattern_len(&self) -> usize {
        (**self).max_pattern_len()
    }

    #[inline(always)]
    fn memory_usage(&self) -> usize {
        (**self).memory_usage()
    }

    #[inline(always)]
    fn prefilter(&self) -> Option<&Prefilter> {
        (**self).prefilter()
    }
}

/// Represents the current state of an overlapping search.
///
/// This is used for overlapping searches since they need to know something
/// about the previous search. For example, when multiple patterns match at the
/// same position, this state tracks the last reported pattern so that the next
/// search knows whether to report another matching pattern or continue with
/// the search at the next position. Additionally, it also tracks which state
/// the last search call terminated in and the current offset of the search
/// in the haystack.
///
/// This type provides limited introspection capabilities. The only thing a
/// caller can do is construct it and pass it around to permit search routines
/// to use it to track state, and to ask whether a match has been found.
///
/// Callers should always provide a fresh state constructed via
/// [`OverlappingState::start`] when starting a new search. That same state
/// should be reused for subsequent searches on the same `Input`. The state
/// given will advance through the haystack itself. Callers can detect the end
/// of a search when neither an error nor a match is returned.
///
/// # Example
///
/// This example shows how to manually iterate over all overlapping matches. If
/// you need this, you might consider using
/// [`AhoCorasick::find_overlapping_iter`](crate::AhoCorasick::find_overlapping_iter)
/// instead, but this shows how to correctly use an `OverlappingState`.
///
/// ```
/// use aho_corasick::{
///     automaton::OverlappingState,
///     AhoCorasick, Input, Match,
/// };
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasick::new(patterns).unwrap();
/// let mut state = OverlappingState::start();
/// let mut matches = vec![];
///
/// loop {
///     ac.find_overlapping(haystack, &mut state);
///     let mat = match state.get_match() {
///         None => break,
///         Some(mat) => mat,
///     };
///     matches.push(mat);
/// }
/// let expected = vec![
///     Match::must(2, 0..3),
///     Match::must(0, 0..6),
///     Match::must(2, 11..14),
///     Match::must(2, 22..25),
///     Match::must(0, 22..28),
///     Match::must(1, 22..31),
/// ];
/// assert_eq!(expected, matches);
/// ```
#[derive(Clone, Debug)]
pub struct OverlappingState {
    /// The match reported by the most recent overlapping search to use this
    /// state.
    ///
    /// If a search does not find any matches, then it is expected to clear
    /// this value.
    mat: Option<Match>,
    /// The state ID of the state at which the search was in when the call
    /// terminated. When this is a match state, `last_match` must be set to a
    /// non-None value.
    ///
    /// A `None` value indicates the start state of the corresponding
    /// automaton. We cannot use the actual ID, since any one automaton may
    /// have many start states, and which one is in use depends on search-time
    /// factors (such as whether the search is anchored or not).
    id: Option<StateID>,
    /// The position of the search.
    ///
    /// When `id` is None (i.e., we are starting a search), this is set to
    /// the beginning of the search as given by the caller regardless of its
    /// current value. Subsequent calls to an overlapping search pick up at
    /// this offset.
    at: usize,
    /// The index into the matching patterns of the next match to report if the
    /// current state is a match state. Note that this may be 1 greater than
    /// the total number of matches to report for the current match state. (In
    /// which case, no more matches should be reported at the current position
    /// and the search should advance to the next position.)
    next_match_index: Option<usize>,
}

impl OverlappingState {
    /// Create a new overlapping state that begins at the start state.
    pub fn start() -> OverlappingState {
        OverlappingState { mat: None, id: None, at: 0, next_match_index: None }
    }

    /// Return the match result of the most recent search to execute with this
    /// state.
    ///
    /// Every search will clear this result automatically, such that if no
    /// match is found, this will always correctly report `None`.
    pub fn get_match(&self) -> Option<Match> {
        self.mat
    }
}

/// An iterator of non-overlapping matches in a particular haystack.
///
/// This iterator yields matches according to the [`MatchKind`] used by this
/// automaton.
///
/// This iterator is constructed via the [`Automaton::try_find_iter`] method.
///
/// The type variable `A` refers to the implementation of the [`Automaton`]
/// trait used to execute the search.
///
/// The lifetime `'a` refers to the lifetime of the [`Automaton`]
/// implementation.
///
/// The lifetime `'h` refers to the lifetime of the haystack being searched.
#[derive(Debug)]
pub struct FindIter<'a, 'h, A> {
    /// The automaton used to drive the search.
    aut: &'a A,
    /// The input parameters to give to each search call.
    ///
    /// The start position of the search is mutated during iteration.
    input: Input<'h>,
    /// Records the end offset of the most recent match. This is necessary to
    /// handle a corner case for preventing empty matches from overlapping with
    /// the ending bounds of a prior match.
    last_match_end: Option<usize>,
}

impl<'a, 'h, A: Automaton> FindIter<'a, 'h, A> {
    /// Creates a new non-overlapping iterator. If the given automaton would
    /// return an error on a search with the given input configuration, then
    /// that error is returned here.
    fn new(
        aut: &'a A,
        input: Input<'h>,
    ) -> Result<FindIter<'a, 'h, A>, MatchError> {
        // The only way this search can fail is if we cannot retrieve the start
        // state. e.g., Asking for an anchored search when only unanchored
        // searches are supported.
        let _ = aut.start_state(input.get_anchored())?;
        Ok(FindIter { aut, input, last_match_end: None })
    }

    /// Executes a search and returns a match if one is found.
    ///
    /// This does not advance the input forward. It just executes a search
    /// based on the current configuration/offsets.
    fn search(&self) -> Option<Match> {
        // The unwrap is OK here because we check at iterator construction time
        // that no subsequent search call (using the same configuration) will
        // ever return an error.
        self.aut
            .try_find(&self.input)
            .expect("already checked that no match error can occur")
    }

    /// Handles the special case of an empty match by ensuring that 1) the
    /// iterator always advances and 2) empty matches never overlap with other
    /// matches.
    ///
    /// (1) is necessary because we principally make progress by setting the
    /// starting location of the next search to the ending location of the last
    /// match. But if a match is empty, then this results in a search that does
    /// not advance and thus does not terminate.
    ///
    /// (2) is not strictly necessary, but makes intuitive sense and matches
    /// the presiding behavior of most general purpose regex engines.
    /// (Obviously this crate isn't a regex engine, but we choose to match
    /// their semantics.) The "intuitive sense" here is that we want to report
    /// NON-overlapping matches. So for example, given the patterns 'a' and
    /// '' (an empty string) against the haystack 'a', without the special
    /// handling, you'd get the matches [0, 1) and [1, 1), where the latter
    /// overlaps with the end bounds of the former.
    ///
    /// Note that we mark this cold and forcefully prevent inlining because
    /// handling empty matches like this is extremely rare and does require
    /// quite a bit of code, comparatively. Keeping this code out of the main
    /// iterator function keeps it smaller and more amenable to inlining
    /// itself.
    #[cold]
    #[inline(never)]
    fn handle_overlapping_empty_match(
        &mut self,
        mut m: Match,
    ) -> Option<Match> {
        assert!(m.is_empty());
        if Some(m.end()) == self.last_match_end {
            self.input.set_start(self.input.start().checked_add(1).unwrap());
            m = self.search()?;
        }
        Some(m)
    }
}

impl<'a, 'h, A: Automaton> Iterator for FindIter<'a, 'h, A> {
    type Item = Match;

    #[inline(always)]
    fn next(&mut self) -> Option<Match> {
        let mut m = self.search()?;
        if m.is_empty() {
            m = self.handle_overlapping_empty_match(m)?;
        }
        self.input.set_start(m.end());
        self.last_match_end = Some(m.end());
        Some(m)
    }
}

/// An iterator of overlapping matches in a particular haystack.
///
/// This iterator will report all possible matches in a particular haystack,
/// even when the matches overlap.
///
/// This iterator is constructed via the
/// [`Automaton::try_find_overlapping_iter`] method.
///
/// The type variable `A` refers to the implementation of the [`Automaton`]
/// trait used to execute the search.
///
/// The lifetime `'a` refers to the lifetime of the [`Automaton`]
/// implementation.
///
/// The lifetime `'h` refers to the lifetime of the haystack being searched.
#[derive(Debug)]
pub struct FindOverlappingIter<'a, 'h, A> {
    aut: &'a A,
    input: Input<'h>,
    state: OverlappingState,
}

impl<'a, 'h, A: Automaton> Iterator for FindOverlappingIter<'a, 'h, A> {
    type Item = Match;

    #[inline(always)]
    fn next(&mut self) -> Option<Match> {
        self.aut
            .try_find_overlapping(&self.input, &mut self.state)
            .expect("already checked that no match error can occur here");
        self.state.get_match()
    }
}

/// An iterator that reports matches in a stream.
///
/// This iterator yields elements of type `io::Result<Match>`, where an error
/// is reported if there was a problem reading from the underlying stream.
/// The iterator terminates only when the underlying stream reaches `EOF`.
///
/// This iterator is constructed via the [`Automaton::try_stream_find_iter`]
/// method.
///
/// The type variable `A` refers to the implementation of the [`Automaton`]
/// trait used to execute the search.
///
/// The type variable `R` refers to the `io::Read` stream that is being read
/// from.
///
/// The lifetime `'a` refers to the lifetime of the [`Automaton`]
/// implementation.
#[cfg(feature = "std")]
#[derive(Debug)]
pub struct StreamFindIter<'a, A, R> {
    it: StreamChunkIter<'a, A, R>,
}

#[cfg(feature = "std")]
impl<'a, A: Automaton, R: std::io::Read> Iterator
    for StreamFindIter<'a, A, R>
{
    type Item = std::io::Result<Match>;

    fn next(&mut self) -> Option<std::io::Result<Match>> {
        loop {
            match self.it.next() {
                None => return None,
                Some(Err(err)) => return Some(Err(err)),
                Some(Ok(StreamChunk::NonMatch { .. })) => {}
                Some(Ok(StreamChunk::Match { mat, .. })) => {
                    return Some(Ok(mat));
                }
            }
        }
    }
}

/// An iterator that reports matches in a stream.
///
/// (This doesn't actually implement the `Iterator` trait because it returns
/// something with a lifetime attached to a buffer it owns, but that's OK. It
/// still has a `next` method and is iterator-like enough to be fine.)
///
/// This iterator yields elements of type `io::Result<StreamChunk>`, where
/// an error is reported if there was a problem reading from the underlying
/// stream. The iterator terminates only when the underlying stream reaches
/// `EOF`.
///
/// The idea here is that each chunk represents either a match or a non-match,
/// and if you concatenated all of the chunks together, you'd reproduce the
/// entire contents of the stream, byte-for-byte.
///
/// This chunk machinery is a bit complicated and it isn't strictly required
/// for a stream searcher that just reports matches. But we do need something
/// like this to deal with the "replacement" API, which needs to know which
/// chunks it can copy and which it needs to replace.
#[cfg(feature = "std")]
#[derive(Debug)]
struct StreamChunkIter<'a, A, R> {
    /// The underlying automaton to do the search.
    aut: &'a A,
    /// The source of bytes we read from.
    rdr: R,
    /// A roll buffer for managing bytes from `rdr`. Basically, this is used
    /// to handle the case of a match that is split by two different
    /// calls to `rdr.read()`. This isn't strictly needed if all we needed to
    /// do was report matches, but here we are reporting chunks of non-matches
    /// and matches and in order to do that, we really just cannot treat our
    /// stream as non-overlapping blocks of bytes. We need to permit some
    /// overlap while we retain bytes from a previous `read` call in memory.
    buf: crate::util::buffer::Buffer,
    /// The unanchored starting state of this automaton.
    start: StateID,
    /// The state of the automaton.
    sid: StateID,
    /// The absolute position over the entire stream.
    absolute_pos: usize,
    /// The position we're currently at within `buf`.
    buffer_pos: usize,
    /// The buffer position of the end of the bytes that we last returned
    /// to the caller. Basically, whenever we find a match, we look to see if
    /// there is a difference between where the match started and the position
    /// of the last byte we returned to the caller. If there's a difference,
    /// then we need to return a 'NonMatch' chunk.
    buffer_reported_pos: usize,
}

#[cfg(feature = "std")]
impl<'a, A: Automaton, R: std::io::Read> StreamChunkIter<'a, A, R> {
    fn new(
        aut: &'a A,
        rdr: R,
    ) -> Result<StreamChunkIter<'a, A, R>, MatchError> {
        // This restriction is a carry-over from older versions of this crate.
        // I didn't have the bandwidth to think through how to handle, say,
        // leftmost-first or leftmost-longest matching, but... it should be
        // possible? The main problem is that once you see a match state in
        // leftmost-first semantics, you can't just stop at that point and
        // report a match. You have to keep going until you either hit a dead
        // state or EOF. So how do you know when you'll hit a dead state? Well,
        // you don't. With Aho-Corasick, I believe you can put a bound on it
        // and say, "once a match has been seen, you'll need to scan forward at
        // most N bytes" where N=aut.max_pattern_len().
        //
        // Which is fine, but it does mean that state about whether we're still
        // looking for a dead state or not needs to persist across buffer
        // refills. Which this code doesn't really handle. It does preserve
        // *some* state across buffer refills, basically ensuring that a match
        // span is always in memory.
        if !aut.match_kind().is_standard() {
            return Err(MatchError::unsupported_stream(aut.match_kind()));
        }
        // This is kind of a cop-out, but empty matches are SUPER annoying.
        // If we know they can't happen (which is what we enforce here), then
        // it makes a lot of logic much simpler. With that said, I'm open to
        // supporting this case, but we need to define proper semantics for it
        // first. It wasn't totally clear to me what it should do at the time
        // of writing, so I decided to just be conservative.
        //
        // It also seems like a very weird case to support anyway. Why search a
        // stream if you're just going to get a match at every position?
        //
        // ¯\_(ツ)_/¯
        if aut.min_pattern_len() == 0 {
            return Err(MatchError::unsupported_empty());
        }
        let start = aut.start_state(Anchored::No)?;
        Ok(StreamChunkIter {
            aut,
            rdr,
            buf: crate::util::buffer::Buffer::new(aut.max_pattern_len()),
            start,
            sid: start,
            absolute_pos: 0,
            buffer_pos: 0,
            buffer_reported_pos: 0,
        })
    }

    fn next(&mut self) -> Option<std::io::Result<StreamChunk>> {
        // This code is pretty gnarly. It IS simpler than the equivalent code
        // in the previous aho-corasick release, in part because we inline
        // automaton traversal here and also in part because we have abdicated
        // support for automatons that contain an empty pattern.
        //
        // I suspect this code could be made a bit simpler by designing a
        // better buffer abstraction.
        //
        // But in general, this code is basically write-only. So you'll need
        // to go through it step-by-step to grok it. One of the key bits of
        // complexity is tracking a few different offsets. 'buffer_pos' is
        // where we are in the buffer for search. 'buffer_reported_pos' is the
        // position immediately following the last byte in the buffer that
        // we've returned to the caller. And 'absolute_pos' is the overall
        // current absolute position of the search in the entire stream, and
        // this is what match spans are reported in terms of.
        loop {
            if self.aut.is_match(self.sid) {
                let mat = self.get_match();
                if let Some(r) = self.get_non_match_chunk(mat) {
                    self.buffer_reported_pos += r.len();
                    let bytes = &self.buf.buffer()[r];
                    return Some(Ok(StreamChunk::NonMatch { bytes }));
                }
                self.sid = self.start;
                let r = self.get_match_chunk(mat);
                self.buffer_reported_pos += r.len();
                let bytes = &self.buf.buffer()[r];
                return Some(Ok(StreamChunk::Match { bytes, mat }));
            }
            if self.buffer_pos >= self.buf.buffer().len() {
                if let Some(r) = self.get_pre_roll_non_match_chunk() {
                    self.buffer_reported_pos += r.len();
                    let bytes = &self.buf.buffer()[r];
                    return Some(Ok(StreamChunk::NonMatch { bytes }));
                }
                if self.buf.buffer().len() >= self.buf.min_buffer_len() {
                    self.buffer_pos = self.buf.min_buffer_len();
                    self.buffer_reported_pos -=
                        self.buf.buffer().len() - self.buf.min_buffer_len();
                    self.buf.roll();
                }
                match self.buf.fill(&mut self.rdr) {
                    Err(err) => return Some(Err(err)),
                    Ok(true) => {}
                    Ok(false) => {
                        // We've hit EOF, but if there are still some
                        // unreported bytes remaining, return them now.
                        if let Some(r) = self.get_eof_non_match_chunk() {
                            self.buffer_reported_pos += r.len();
                            let bytes = &self.buf.buffer()[r];
                            return Some(Ok(StreamChunk::NonMatch { bytes }));
                        }
                        // We've reported everything!
                        return None;
                    }
                }
            }
            let start = self.absolute_pos;
            for &byte in self.buf.buffer()[self.buffer_pos..].iter() {
                self.sid = self.aut.next_state(Anchored::No, self.sid, byte);
                self.absolute_pos += 1;
                if self.aut.is_match(self.sid) {
                    break;
                }
            }
            self.buffer_pos += self.absolute_pos - start;
        }
    }

    /// Return a match chunk for the given match. It is assumed that the match
    /// ends at the current `buffer_pos`.
    fn get_match_chunk(&self, mat: Match) -> core::ops::Range<usize> {
        let start = self.buffer_pos - mat.len();
        let end = self.buffer_pos;
        start..end
    }

    /// Return a non-match chunk, if necessary, just before reporting a match.
    /// This returns `None` if there is nothing to report. Otherwise, this
    /// assumes that the given match ends at the current `buffer_pos`.
    fn get_non_match_chunk(
        &self,
        mat: Match,
    ) -> Option<core::ops::Range<usize>> {
        let buffer_mat_start = self.buffer_pos - mat.len();
        if buffer_mat_start > self.buffer_reported_pos {
            let start = self.buffer_reported_pos;
            let end = buffer_mat_start;
            return Some(start..end);
        }
        None
    }

    /// Look for any bytes that should be reported as a non-match just before
    /// rolling the buffer.
    ///
    /// Note that this only reports bytes up to `buffer.len() -
    /// min_buffer_len`, as it's not possible to know whether the bytes
    /// following that will participate in a match or not.
    fn get_pre_roll_non_match_chunk(&self) -> Option<core::ops::Range<usize>> {
        let end =
            self.buf.buffer().len().saturating_sub(self.buf.min_buffer_len());
        if self.buffer_reported_pos < end {
            return Some(self.buffer_reported_pos..end);
        }
        None
    }

    /// Return any unreported bytes as a non-match up to the end of the buffer.
    ///
    /// This should only be called when the entire contents of the buffer have
    /// been searched and EOF has been hit when trying to fill the buffer.
    fn get_eof_non_match_chunk(&self) -> Option<core::ops::Range<usize>> {
        if self.buffer_reported_pos < self.buf.buffer().len() {
            return Some(self.buffer_reported_pos..self.buf.buffer().len());
        }
        None
    }

    /// Return the match at the current position for the current state.
    ///
    /// This panics if `self.aut.is_match(self.sid)` isn't true.
    fn get_match(&self) -> Match {
        get_match(self.aut, self.sid, 0, self.absolute_pos)
    }
}

/// A single chunk yielded by the stream chunk iterator.
///
/// The `'r` lifetime refers to the lifetime of the stream chunk iterator.
#[cfg(feature = "std")]
#[derive(Debug)]
enum StreamChunk<'r> {
    /// A chunk that does not contain any matches.
    NonMatch { bytes: &'r [u8] },
    /// A chunk that precisely contains a match.
    Match { bytes: &'r [u8], mat: Match },
}

#[inline(never)]
pub(crate) fn try_find_fwd<A: Automaton + ?Sized>(
    aut: &A,
    input: &Input<'_>,
) -> Result<Option<Match>, MatchError> {
    if input.is_done() {
        return Ok(None);
    }
    let earliest = aut.match_kind().is_standard() || input.get_earliest();
    if input.get_anchored().is_anchored() {
        try_find_fwd_imp(aut, input, None, Anchored::Yes, earliest)
    } else if let Some(pre) = aut.prefilter() {
        if earliest {
            try_find_fwd_imp(aut, input, Some(pre), Anchored::No, true)
        } else {
            try_find_fwd_imp(aut, input, Some(pre), Anchored::No, false)
        }
    } else {
        if earliest {
            try_find_fwd_imp(aut, input, None, Anchored::No, true)
        } else {
            try_find_fwd_imp(aut, input, None, Anchored::No, false)
        }
    }
}

#[inline(always)]
fn try_find_fwd_imp<A: Automaton + ?Sized>(
    aut: &A,
    input: &Input<'_>,
    pre: Option<&Prefilter>,
    anchored: Anchored,
    earliest: bool,
) -> Result<Option<Match>, MatchError> {
    let mut sid = aut.start_state(input.get_anchored())?;
    let mut at = input.start();
    let mut mat = None;
    if aut.is_match(sid) {
        mat = Some(get_match(aut, sid, 0, at));
        if earliest {
            return Ok(mat);
        }
    }
    if let Some(pre) = pre {
        match pre.find_in(input.haystack(), input.get_span()) {
            Candidate::None => return Ok(None),
            Candidate::Match(m) => return Ok(Some(m)),
            Candidate::PossibleStartOfMatch(i) => {
                at = i;
            }
        }
    }
    while at < input.end() {
        // I've tried unrolling this loop and eliding bounds checks, but no
        // matter what I did, I could not observe a consistent improvement on
        // any benchmark I could devise. (If someone wants to re-litigate this,
        // the way to do it is to add an 'next_state_unchecked' method to the
        // 'Automaton' trait with a default impl that uses 'next_state'. Then
        // use 'aut.next_state_unchecked' here and implement it on DFA using
        // unchecked slice index acces.)
        sid = aut.next_state(anchored, sid, input.haystack()[at]);
        if aut.is_special(sid) {
            if aut.is_dead(sid) {
                return Ok(mat);
            } else if aut.is_match(sid) {
                // We use 'at + 1' here because the match state is entered
                // at the last byte of the pattern. Since we use half-open
                // intervals, the end of the range of the match is one past the
                // last byte.
                let m = get_match(aut, sid, 0, at + 1);
                // For the automata in this crate, we make a size trade off
                // where we reuse the same automaton for both anchored and
                // unanchored searches. We achieve this, principally, by simply
                // not following failure transitions while computing the next
                // state. Instead, if we fail to find the next state, we return
                // a dead state, which instructs the search to stop. (This
                // is why 'next_state' needs to know whether the search is
                // anchored or not.) In addition, we have different start
                // states for anchored and unanchored searches. The latter has
                // a self-loop where as the former does not.
                //
                // In this way, we can use the same trie to execute both
                // anchored and unanchored searches. There is a catch though.
                // When building an Aho-Corasick automaton for unanchored
                // searches, we copy matches from match states to other states
                // (which would otherwise not be match states) if they are
                // reachable via a failure transition. In the case of an
                // anchored search, we *specifically* do not want to report
                // these matches because they represent matches that start past
                // the beginning of the search.
                //
                // Now we could tweak the automaton somehow to differentiate
                // anchored from unanchored match states, but this would make
                // 'aut.is_match' and potentially 'aut.is_special' slower. And
                // also make the automaton itself more complex.
                //
                // Instead, we insert a special hack: if the search is
                // anchored, we simply ignore matches that don't begin at
                // the start of the search. This is not quite ideal, but we
                // do specialize this function in such a way that unanchored
                // searches don't pay for this additional branch. While this
                // might cause a search to continue on for more than it
                // otherwise optimally would, it will be no more than the
                // longest pattern in the automaton. The reason for this is
                // that we ensure we don't follow failure transitions during
                // an anchored search. Combined with using a different anchored
                // starting state with no self-loop, we guarantee that we'll
                // at worst move through a number of transitions equal to the
                // longest pattern.
                //
                // Now for DFAs, the whole point of them is to eliminate
                // failure transitions entirely. So there is no way to say "if
                // it's an anchored search don't follow failure transitions."
                // Instead, we actually have to build two entirely separate
                // automatons into the transition table. One with failure
                // transitions built into it and another that is effectively
                // just an encoding of the base trie into a transition table.
                // DFAs still need this check though, because the match states
                // still carry matches only reachable via a failure transition.
                // Why? Because removing them seems difficult, although I
                // haven't given it a lot of thought.
                if !(anchored.is_anchored() && m.start() > input.start()) {
                    mat = Some(m);
                    if earliest {
                        return Ok(mat);
                    }
                }
            } else if let Some(pre) = pre {
                // If we're here, we know it's a special state that is not a
                // dead or a match state AND that a prefilter is active. Thus,
                // it must be a start state.
                debug_assert!(aut.is_start(sid));
                // We don't care about 'Candidate::Match' here because if such
                // a match were possible, it would have been returned above
                // when we run the prefilter before walking the automaton.
                let span = Span::from(at..input.end());
                match pre.find_in(input.haystack(), span).into_option() {
                    None => return Ok(None),
                    Some(i) => {
                        if i > at {
                            at = i;
                            continue;
                        }
                    }
                }
            } else {
                // When pre.is_none(), then starting states should not be
                // treated as special. That is, without a prefilter, is_special
                // should only return true when the state is a dead or a match
                // state.
                //
                // It is possible to execute a search without a prefilter even
                // when the underlying searcher has one: an anchored search.
                // But in this case, the automaton makes it impossible to move
                // back to the start state by construction, and thus, we should
                // never reach this branch.
                debug_assert!(false, "unreachable");
            }
        }
        at += 1;
    }
    Ok(mat)
}

#[inline(never)]
fn try_find_overlapping_fwd<A: Automaton + ?Sized>(
    aut: &A,
    input: &Input<'_>,
    state: &mut OverlappingState,
) -> Result<(), MatchError> {
    state.mat = None;
    if input.is_done() {
        return Ok(());
    }
    // Searching with a pattern ID is always anchored, so we should only ever
    // use a prefilter when no pattern ID is given.
    if aut.prefilter().is_some() && !input.get_anchored().is_anchored() {
        let pre = aut.prefilter().unwrap();
        try_find_overlapping_fwd_imp(aut, input, Some(pre), state)
    } else {
        try_find_overlapping_fwd_imp(aut, input, None, state)
    }
}

#[inline(always)]
fn try_find_overlapping_fwd_imp<A: Automaton + ?Sized>(
    aut: &A,
    input: &Input<'_>,
    pre: Option<&Prefilter>,
    state: &mut OverlappingState,
) -> Result<(), MatchError> {
    let mut sid = match state.id {
        None => {
            let sid = aut.start_state(input.get_anchored())?;
            // Handle the case where the start state is a match state. That is,
            // the empty string is in our automaton. We report every match we
            // can here before moving on and updating 'state.at' and 'state.id'
            // to find more matches in other parts of the haystack.
            if aut.is_match(sid) {
                let i = state.next_match_index.unwrap_or(0);
                let len = aut.match_len(sid);
                if i < len {
                    state.next_match_index = Some(i + 1);
                    state.mat = Some(get_match(aut, sid, i, input.start()));
                    return Ok(());
                }
            }
            state.at = input.start();
            state.id = Some(sid);
            state.next_match_index = None;
            state.mat = None;
            sid
        }
        Some(sid) => {
            // If we still have matches left to report in this state then
            // report them until we've exhausted them. Only after that do we
            // advance to the next offset in the haystack.
            if let Some(i) = state.next_match_index {
                let len = aut.match_len(sid);
                if i < len {
                    state.next_match_index = Some(i + 1);
                    state.mat = Some(get_match(aut, sid, i, state.at + 1));
                    return Ok(());
                }
                // Once we've reported all matches at a given position, we need
                // to advance the search to the next position.
                state.at += 1;
                state.next_match_index = None;
                state.mat = None;
            }
            sid
        }
    };
    while state.at < input.end() {
        sid = aut.next_state(
            input.get_anchored(),
            sid,
            input.haystack()[state.at],
        );
        if aut.is_special(sid) {
            state.id = Some(sid);
            if aut.is_dead(sid) {
                return Ok(());
            } else if aut.is_match(sid) {
                state.next_match_index = Some(1);
                state.mat = Some(get_match(aut, sid, 0, state.at + 1));
                return Ok(());
            } else if let Some(pre) = pre {
                // If we're here, we know it's a special state that is not a
                // dead or a match state AND that a prefilter is active. Thus,
                // it must be a start state.
                debug_assert!(aut.is_start(sid));
                let span = Span::from(state.at..input.end());
                match pre.find_in(input.haystack(), span).into_option() {
                    None => return Ok(()),
                    Some(i) => {
                        if i > state.at {
                            state.at = i;
                            continue;
                        }
                    }
                }
            } else {
                // When pre.is_none(), then starting states should not be
                // treated as special. That is, without a prefilter, is_special
                // should only return true when the state is a dead or a match
                // state.
                //
                // ... except for one special case: in stream searching, we
                // currently call overlapping search with a 'None' prefilter,
                // regardless of whether one exists or not, because stream
                // searching can't currently deal with prefilters correctly in
                // all cases.
            }
        }
        state.at += 1;
    }
    state.id = Some(sid);
    Ok(())
}

#[inline(always)]
fn get_match<A: Automaton + ?Sized>(
    aut: &A,
    sid: StateID,
    index: usize,
    at: usize,
) -> Match {
    let pid = aut.match_pattern(sid, index);
    let len = aut.pattern_len(pid);
    Match::new(pid, (at - len)..at)
}

/// Write a prefix "state" indicator for fmt::Debug impls. It always writes
/// exactly two printable bytes to the given formatter.
///
/// Specifically, this tries to succinctly distinguish the different types of
/// states: dead states, start states and match states. It even accounts for
/// the possible overlappings of different state types. (The only possible
/// overlapping is that of match and start states.)
pub(crate) fn fmt_state_indicator<A: Automaton>(
    f: &mut core::fmt::Formatter<'_>,
    aut: A,
    id: StateID,
) -> core::fmt::Result {
    if aut.is_dead(id) {
        write!(f, "D ")?;
    } else if aut.is_match(id) {
        if aut.is_start(id) {
            write!(f, "*>")?;
        } else {
            write!(f, "* ")?;
        }
    } else if aut.is_start(id) {
        write!(f, " >")?;
    } else {
        write!(f, "  ")?;
    }
    Ok(())
}

/// Return an iterator of transitions in a sparse format given an iterator
/// of all explicitly defined transitions. The iterator yields ranges of
/// transitions, such that any adjacent transitions mapped to the same
/// state are combined into a single range.
pub(crate) fn sparse_transitions<'a>(
    mut it: impl Iterator<Item = (u8, StateID)> + 'a,
) -> impl Iterator<Item = (u8, u8, StateID)> + 'a {
    let mut cur: Option<(u8, u8, StateID)> = None;
    core::iter::from_fn(move || {
        while let Some((class, next)) = it.next() {
            let (prev_start, prev_end, prev_next) = match cur {
                Some(x) => x,
                None => {
                    cur = Some((class, class, next));
                    continue;
                }
            };
            if prev_next == next {
                cur = Some((prev_start, class, prev_next));
            } else {
                cur = Some((class, class, next));
                return Some((prev_start, prev_end, prev_next));
            }
        }
        if let Some((start, end, next)) = cur.take() {
            return Some((start, end, next));
        }
        None
    })
}