1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
// Copyright Mozilla Foundation. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use super::*;
use crate::ascii::*;
use crate::data::position;
use crate::handles::*;
use crate::variant::*;

pub struct SingleByteDecoder {
    table: &'static [u16; 128],
}

impl SingleByteDecoder {
    pub fn new(data: &'static [u16; 128]) -> VariantDecoder {
        VariantDecoder::SingleByte(SingleByteDecoder { table: data })
    }

    pub fn max_utf16_buffer_length(&self, byte_length: usize) -> Option<usize> {
        Some(byte_length)
    }

    pub fn max_utf8_buffer_length_without_replacement(&self, byte_length: usize) -> Option<usize> {
        byte_length.checked_mul(3)
    }

    pub fn max_utf8_buffer_length(&self, byte_length: usize) -> Option<usize> {
        byte_length.checked_mul(3)
    }

    pub fn decode_to_utf8_raw(
        &mut self,
        src: &[u8],
        dst: &mut [u8],
        _last: bool,
    ) -> (DecoderResult, usize, usize) {
        let mut source = ByteSource::new(src);
        let mut dest = Utf8Destination::new(dst);
        'outermost: loop {
            match dest.copy_ascii_from_check_space_bmp(&mut source) {
                CopyAsciiResult::Stop(ret) => return ret,
                CopyAsciiResult::GoOn((mut non_ascii, mut handle)) => 'middle: loop {
                    // Start non-boilerplate
                    //
                    // Since the non-ASCIIness of `non_ascii` is hidden from
                    // the optimizer, it can't figure out that it's OK to
                    // statically omit the bound check when accessing
                    // `[u16; 128]` with an index
                    // `non_ascii as usize - 0x80usize`.
                    //
                    // Safety: `non_ascii` is a u8 byte >=0x80, from the invariants
                    // on Utf8Destination::copy_ascii_from_check_space_bmp()
                    let mapped =
                        unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
                    // let mapped = self.table[non_ascii as usize - 0x80usize];
                    if mapped == 0u16 {
                        return (
                            DecoderResult::Malformed(1, 0),
                            source.consumed(),
                            handle.written(),
                        );
                    }
                    let dest_again = handle.write_bmp_excl_ascii(mapped);
                    // End non-boilerplate
                    match source.check_available() {
                        Space::Full(src_consumed) => {
                            return (
                                DecoderResult::InputEmpty,
                                src_consumed,
                                dest_again.written(),
                            );
                        }
                        Space::Available(source_handle) => {
                            match dest_again.check_space_bmp() {
                                Space::Full(dst_written) => {
                                    return (
                                        DecoderResult::OutputFull,
                                        source_handle.consumed(),
                                        dst_written,
                                    );
                                }
                                Space::Available(mut destination_handle) => {
                                    let (mut b, unread_handle) = source_handle.read();
                                    let source_again = unread_handle.commit();
                                    'innermost: loop {
                                        if b > 127 {
                                            non_ascii = b;
                                            handle = destination_handle;
                                            continue 'middle;
                                        }
                                        // Testing on Haswell says that we should write the
                                        // byte unconditionally instead of trying to unread it
                                        // to make it part of the next SIMD stride.
                                        let dest_again_again = destination_handle.write_ascii(b);
                                        if b < 60 {
                                            // We've got punctuation
                                            match source_again.check_available() {
                                                Space::Full(src_consumed_again) => {
                                                    return (
                                                        DecoderResult::InputEmpty,
                                                        src_consumed_again,
                                                        dest_again_again.written(),
                                                    );
                                                }
                                                Space::Available(source_handle_again) => {
                                                    match dest_again_again.check_space_bmp() {
                                                        Space::Full(dst_written_again) => {
                                                            return (
                                                                DecoderResult::OutputFull,
                                                                source_handle_again.consumed(),
                                                                dst_written_again,
                                                            );
                                                        }
                                                        Space::Available(
                                                            destination_handle_again,
                                                        ) => {
                                                            let (b_again, _unread_handle_again) =
                                                                source_handle_again.read();
                                                            b = b_again;
                                                            destination_handle =
                                                                destination_handle_again;
                                                            continue 'innermost;
                                                        }
                                                    }
                                                }
                                            }
                                        }
                                        // We've got markup or ASCII text
                                        continue 'outermost;
                                    }
                                }
                            }
                        }
                    }
                },
            }
        }
    }

    pub fn decode_to_utf16_raw(
        &mut self,
        src: &[u8],
        dst: &mut [u16],
        _last: bool,
    ) -> (DecoderResult, usize, usize) {
        let (pending, length) = if dst.len() < src.len() {
            (DecoderResult::OutputFull, dst.len())
        } else {
            (DecoderResult::InputEmpty, src.len())
        };
        // Safety invariant: converted <= length. Quite often we have `converted < length`
        // which will be separately marked.
        let mut converted = 0usize;
        'outermost: loop {
            match unsafe {
                // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x`
                ascii_to_basic_latin(
                    src.as_ptr().add(converted),
                    dst.as_mut_ptr().add(converted),
                    length - converted,
                )
            } {
                None => {
                    return (pending, length, length);
                }
                Some((mut non_ascii, consumed)) => {
                    // Safety invariant: `converted <= length` upheld, since this can only consume
                    // up to `length - converted` bytes.
                    //
                    // Furthermore, in this context,
                    // we can assume `converted < length` since this branch is only ever hit when
                    // ascii_to_basic_latin fails to consume the entire slice
                    converted += consumed;
                    'middle: loop {
                        // `converted` doesn't count the reading of `non_ascii` yet.
                        // Since the non-ASCIIness of `non_ascii` is hidden from
                        // the optimizer, it can't figure out that it's OK to
                        // statically omit the bound check when accessing
                        // `[u16; 128]` with an index
                        // `non_ascii as usize - 0x80usize`.
                        //
                        // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to
                        // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that.
                        let mapped =
                            unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
                        // let mapped = self.table[non_ascii as usize - 0x80usize];
                        if mapped == 0u16 {
                            return (
                                DecoderResult::Malformed(1, 0),
                                converted + 1, // +1 `for non_ascii`
                                converted,
                            );
                        }
                        unsafe {
                            // Safety: As mentioned above, `converted < length`
                            *(dst.get_unchecked_mut(converted)) = mapped;
                        }
                        // Safety: `converted <= length` upheld, since `converted < length` before this
                        converted += 1;
                        // Next, handle ASCII punctuation and non-ASCII without
                        // going back to ASCII acceleration. Non-ASCII scripts
                        // use ASCII punctuation, so this avoid going to
                        // acceleration just for punctuation/space and then
                        // failing. This is a significant boost to non-ASCII
                        // scripts.
                        // TODO: Split out Latin converters without this part
                        // this stuff makes Latin script-conversion slower.
                        if converted == length {
                            return (pending, length, length);
                        }
                        // Safety: We are back to `converted < length` because of the == above
                        // and can perform this check.
                        let mut b = unsafe { *(src.get_unchecked(converted)) };
                        // Safety: `converted < length` is upheld for this loop
                        'innermost: loop {
                            if b > 127 {
                                non_ascii = b;
                                continue 'middle;
                            }
                            // Testing on Haswell says that we should write the
                            // byte unconditionally instead of trying to unread it
                            // to make it part of the next SIMD stride.
                            unsafe {
                                // Safety: `converted < length` is true for this loop
                                *(dst.get_unchecked_mut(converted)) = u16::from(b);
                            }
                            // Safety: We are now at `converted <= length`. We should *not* `continue`
                            // the loop without reverifying
                            converted += 1;
                            if b < 60 {
                                // We've got punctuation
                                if converted == length {
                                    return (pending, length, length);
                                }
                                // Safety: we're back to `converted <= length` because of the == above
                                b = unsafe { *(src.get_unchecked(converted)) };
                                // Safety: The loop continues as `converted < length`
                                continue 'innermost;
                            }
                            // We've got markup or ASCII text
                            continue 'outermost;
                        }
                    }
                }
            }
        }
    }

    pub fn latin1_byte_compatible_up_to(&self, buffer: &[u8]) -> usize {
        let mut bytes = buffer;
        let mut total = 0;
        loop {
            if let Some((non_ascii, offset)) = validate_ascii(bytes) {
                total += offset;
                // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to
                // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that.
                let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
                if mapped != u16::from(non_ascii) {
                    return total;
                }
                total += 1;
                bytes = &bytes[offset + 1..];
            } else {
                return total;
            }
        }
    }
}

pub struct SingleByteEncoder {
    table: &'static [u16; 128],
    run_bmp_offset: usize,
    run_byte_offset: usize,
    run_length: usize,
}

impl SingleByteEncoder {
    pub fn new(
        encoding: &'static Encoding,
        data: &'static [u16; 128],
        run_bmp_offset: u16,
        run_byte_offset: u8,
        run_length: u8,
    ) -> Encoder {
        Encoder::new(
            encoding,
            VariantEncoder::SingleByte(SingleByteEncoder {
                table: data,
                run_bmp_offset: run_bmp_offset as usize,
                run_byte_offset: run_byte_offset as usize,
                run_length: run_length as usize,
            }),
        )
    }

    pub fn max_buffer_length_from_utf16_without_replacement(
        &self,
        u16_length: usize,
    ) -> Option<usize> {
        Some(u16_length)
    }

    pub fn max_buffer_length_from_utf8_without_replacement(
        &self,
        byte_length: usize,
    ) -> Option<usize> {
        Some(byte_length)
    }

    #[inline(always)]
    fn encode_u16(&self, code_unit: u16) -> Option<u8> {
        // First, we see if the code unit falls into a run of consecutive
        // code units that can be mapped by offset. This is very efficient
        // for most non-Latin encodings as well as Latin1-ish encodings.
        //
        // For encodings that don't fit this pattern, the run (which may
        // have the length of just one) just establishes the starting point
        // for the next rule.
        //
        // Next, we do a forward linear search in the part of the index
        // after the run. Even in non-Latin1-ish Latin encodings (except
        // macintosh), the lower case letters are here.
        //
        // Next, we search the third quadrant up to the start of the run
        // (upper case letters in Latin encodings except macintosh, in
        // Greek and in KOI encodings) and then the second quadrant,
        // except if the run stared before the third quadrant, we search
        // the second quadrant up to the run.
        //
        // Last, we search the first quadrant, which has unused controls
        // or punctuation in most encodings. This is bad for macintosh
        // and IBM866, but those are rare.

        // Run of consecutive units
        let unit_as_usize = code_unit as usize;
        let offset = unit_as_usize.wrapping_sub(self.run_bmp_offset);
        if offset < self.run_length {
            return Some((128 + self.run_byte_offset + offset) as u8);
        }

        // Search after the run
        let tail_start = self.run_byte_offset + self.run_length;
        if let Some(pos) = position(&self.table[tail_start..], code_unit) {
            return Some((128 + tail_start + pos) as u8);
        }

        if self.run_byte_offset >= 64 {
            // Search third quadrant before the run
            if let Some(pos) = position(&self.table[64..self.run_byte_offset], code_unit) {
                return Some(((128 + 64) + pos) as u8);
            }

            // Search second quadrant
            if let Some(pos) = position(&self.table[32..64], code_unit) {
                return Some(((128 + 32) + pos) as u8);
            }
        } else if let Some(pos) = position(&self.table[32..self.run_byte_offset], code_unit) {
            // windows-1252, windows-874, ISO-8859-15 and ISO-8859-5
            // Search second quadrant before the run
            return Some(((128 + 32) + pos) as u8);
        }

        // Search first quadrant
        if let Some(pos) = position(&self.table[..32], code_unit) {
            return Some((128 + pos) as u8);
        }

        None
    }

    ascii_compatible_bmp_encoder_function!(
        {
            match self.encode_u16(bmp) {
                Some(byte) => handle.write_one(byte),
                None => {
                    return (
                        EncoderResult::unmappable_from_bmp(bmp),
                        source.consumed(),
                        handle.written(),
                    );
                }
            }
        },
        bmp,
        self,
        source,
        handle,
        copy_ascii_to_check_space_one,
        check_space_one,
        encode_from_utf8_raw,
        str,
        Utf8Source,
        true
    );

    pub fn encode_from_utf16_raw(
        &mut self,
        src: &[u16],
        dst: &mut [u8],
        _last: bool,
    ) -> (EncoderResult, usize, usize) {
        let (pending, length) = if dst.len() < src.len() {
            (EncoderResult::OutputFull, dst.len())
        } else {
            (EncoderResult::InputEmpty, src.len())
        };
        // Safety invariant: converted <= length. Quite often we have `converted < length`
        // which will be separately marked.
        let mut converted = 0usize;
        'outermost: loop {
            match unsafe {
                // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x`
                basic_latin_to_ascii(
                    src.as_ptr().add(converted),
                    dst.as_mut_ptr().add(converted),
                    length - converted,
                )
            } {
                None => {
                    return (pending, length, length);
                }
                Some((mut non_ascii, consumed)) => {
                    // Safety invariant: `converted <= length` upheld, since this can only consume
                    // up to `length - converted` bytes.
                    //
                    // Furthermore, in this context,
                    // we can assume `converted < length` since this branch is only ever hit when
                    // ascii_to_basic_latin fails to consume the entire slice
                    converted += consumed;
                    'middle: loop {
                        // `converted` doesn't count the reading of `non_ascii` yet.
                        match self.encode_u16(non_ascii) {
                            Some(byte) => {
                                unsafe {
                                    // Safety: we're allowed this access since `converted < length`
                                    *(dst.get_unchecked_mut(converted)) = byte;
                                }
                                converted += 1;
                                // `converted <= length` now
                            }
                            None => {
                                // At this point, we need to know if we
                                // have a surrogate.
                                let high_bits = non_ascii & 0xFC00u16;
                                if high_bits == 0xD800u16 {
                                    // high surrogate
                                    if converted + 1 == length {
                                        // End of buffer. This surrogate is unpaired.
                                        return (
                                            EncoderResult::Unmappable('\u{FFFD}'),
                                            converted + 1, // +1 `for non_ascii`
                                            converted,
                                        );
                                    }
                                    // Safety: convered < length from outside the match, and `converted + 1 != length`,
                                    // So `converted + 1 < length` as well. We're in bounds
                                    let second =
                                        u32::from(unsafe { *src.get_unchecked(converted + 1) });
                                    if second & 0xFC00u32 != 0xDC00u32 {
                                        return (
                                            EncoderResult::Unmappable('\u{FFFD}'),
                                            converted + 1, // +1 `for non_ascii`
                                            converted,
                                        );
                                    }
                                    // The next code unit is a low surrogate.
                                    let astral: char = unsafe {
                                        // Safety: We can rely on non_ascii being 0xD800-0xDBFF since the high bits are 0xD800
                                        // Then, (non_ascii << 10 - 0xD800 << 10) becomes between (0 to 0x3FF) << 10, which is between
                                        // 0x400 to 0xffc00. Adding the 0x10000 gives a range of 0x10400 to 0x10fc00. Subtracting the 0xDC00
                                        // gives 0x2800 to 0x102000
                                        // The second term is between 0xDC00 and 0xDFFF from the check above. This gives a maximum
                                        // possible range of (0x10400 + 0xDC00) to (0x102000 + 0xDFFF) which is 0x1E000 to 0x10ffff.
                                        // This is in range.
                                        //
                                        // From a Unicode principles perspective this can also be verified as we have checked that `non_ascii` is a high surrogate
                                        // (0xD800..=0xDBFF), and that `second` is a low surrogate (`0xDC00..=0xDFFF`), and we are applying reverse of the UTC16 transformation
                                        // algorithm <https://en.wikipedia.org/wiki/UTF-16#Code_points_from_U+010000_to_U+10FFFF>, by applying the high surrogate - 0xD800 to the
                                        // high ten bits, and the low surrogate - 0xDc00 to the low ten bits, and then adding 0x10000
                                        ::core::char::from_u32_unchecked(
                                            (u32::from(non_ascii) << 10) + second
                                                - (((0xD800u32 << 10) - 0x1_0000u32) + 0xDC00u32),
                                        )
                                    };
                                    return (
                                        EncoderResult::Unmappable(astral),
                                        converted + 2, // +2 `for non_ascii` and `second`
                                        converted,
                                    );
                                }
                                if high_bits == 0xDC00u16 {
                                    // Unpaired low surrogate
                                    return (
                                        EncoderResult::Unmappable('\u{FFFD}'),
                                        converted + 1, // +1 `for non_ascii`
                                        converted,
                                    );
                                }
                                return (
                                    EncoderResult::unmappable_from_bmp(non_ascii),
                                    converted + 1, // +1 `for non_ascii`
                                    converted,
                                );
                                // Safety: This branch diverges, so no need to uphold invariants on `converted`
                            }
                        }
                        // Next, handle ASCII punctuation and non-ASCII without
                        // going back to ASCII acceleration. Non-ASCII scripts
                        // use ASCII punctuation, so this avoid going to
                        // acceleration just for punctuation/space and then
                        // failing. This is a significant boost to non-ASCII
                        // scripts.
                        // TODO: Split out Latin converters without this part
                        // this stuff makes Latin script-conversion slower.
                        if converted == length {
                            return (pending, length, length);
                        }
                        // Safety: we're back to `converted < length` due to the == above and can perform
                        // the unchecked read
                        let mut unit = unsafe { *(src.get_unchecked(converted)) };
                        'innermost: loop {
                            // Safety: This loop always begins with `converted < length`, see
                            // the invariant outside and the comment on the continue below
                            if unit > 127 {
                                non_ascii = unit;
                                continue 'middle;
                            }
                            // Testing on Haswell says that we should write the
                            // byte unconditionally instead of trying to unread it
                            // to make it part of the next SIMD stride.
                            unsafe {
                                // Safety: Can rely on converted < length
                                *(dst.get_unchecked_mut(converted)) = unit as u8;
                            }
                            converted += 1;
                            // `converted <= length` here
                            if unit < 60 {
                                // We've got punctuation
                                if converted == length {
                                    return (pending, length, length);
                                }
                                // Safety: `converted < length` due to the == above. The read is safe.
                                unit = unsafe { *(src.get_unchecked(converted)) };
                                // Safety: This only happens if `converted < length`, maintaining it
                                continue 'innermost;
                            }
                            // We've got markup or ASCII text
                            continue 'outermost;
                            // Safety: All other routes to here diverge so the continue is the only
                            // way to run the innermost loop.
                        }
                    }
                }
            }
        }
    }
}

// Any copyright to the test code below this comment is dedicated to the
// Public Domain. http://creativecommons.org/publicdomain/zero/1.0/

#[cfg(all(test, feature = "alloc"))]
mod tests {
    use super::super::testing::*;
    use super::super::*;

    #[test]
    fn test_windows_1255_ca() {
        decode(WINDOWS_1255, b"\xCA", "\u{05BA}");
        encode(WINDOWS_1255, "\u{05BA}", b"\xCA");
    }

    #[test]
    fn test_ascii_punctuation() {
        let bytes = b"\xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4. \xC1\xF5\xF4\xFC \xE5\xDF\xED\xE1\xE9 \xDD\xED\xE1 \xF4\xE5\xF3\xF4.";
        let characters = "\u{0391}\u{03C5}\u{03C4}\u{03CC} \
                          \u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \
                          \u{03C4}\u{03B5}\u{03C3}\u{03C4}. \u{0391}\u{03C5}\u{03C4}\u{03CC} \
                          \u{03B5}\u{03AF}\u{03BD}\u{03B1}\u{03B9} \u{03AD}\u{03BD}\u{03B1} \
                          \u{03C4}\u{03B5}\u{03C3}\u{03C4}.";
        decode(WINDOWS_1253, bytes, characters);
        encode(WINDOWS_1253, characters, bytes);
    }

    #[test]
    fn test_decode_malformed() {
        decode(
            WINDOWS_1253,
            b"\xC1\xF5\xD2\xF4\xFC",
            "\u{0391}\u{03C5}\u{FFFD}\u{03C4}\u{03CC}",
        );
    }

    #[test]
    fn test_encode_unmappables() {
        encode(
            WINDOWS_1253,
            "\u{0391}\u{03C5}\u{2603}\u{03C4}\u{03CC}",
            b"\xC1\xF5&#9731;\xF4\xFC",
        );
        encode(
            WINDOWS_1253,
            "\u{0391}\u{03C5}\u{1F4A9}\u{03C4}\u{03CC}",
            b"\xC1\xF5&#128169;\xF4\xFC",
        );
    }

    #[test]
    fn test_encode_unpaired_surrogates() {
        encode_from_utf16(
            WINDOWS_1253,
            &[0x0391u16, 0x03C5u16, 0xDCA9u16, 0x03C4u16, 0x03CCu16],
            b"\xC1\xF5&#65533;\xF4\xFC",
        );
        encode_from_utf16(
            WINDOWS_1253,
            &[0x0391u16, 0x03C5u16, 0xD83Du16, 0x03C4u16, 0x03CCu16],
            b"\xC1\xF5&#65533;\xF4\xFC",
        );
        encode_from_utf16(
            WINDOWS_1253,
            &[0x0391u16, 0x03C5u16, 0x03C4u16, 0x03CCu16, 0xD83Du16],
            b"\xC1\xF5\xF4\xFC&#65533;",
        );
    }

    pub const HIGH_BYTES: &'static [u8; 128] = &[
        0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E,
        0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D,
        0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC,
        0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB,
        0xBC, 0xBD, 0xBE, 0xBF, 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA,
        0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9,
        0xDA, 0xDB, 0xDC, 0xDD, 0xDE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8,
        0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,
        0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF,
    ];

    fn decode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) {
        let mut with_replacement = [0u16; 128];
        let mut it = data.iter().enumerate();
        loop {
            match it.next() {
                Some((i, code_point)) => {
                    if *code_point == 0 {
                        with_replacement[i] = 0xFFFD;
                    } else {
                        with_replacement[i] = *code_point;
                    }
                }
                None => {
                    break;
                }
            }
        }

        decode_to_utf16(encoding, HIGH_BYTES, &with_replacement[..]);
    }

    fn encode_single_byte(encoding: &'static Encoding, data: &'static [u16; 128]) {
        let mut with_zeros = [0u8; 128];
        let mut it = data.iter().enumerate();
        loop {
            match it.next() {
                Some((i, code_point)) => {
                    if *code_point == 0 {
                        with_zeros[i] = 0;
                    } else {
                        with_zeros[i] = HIGH_BYTES[i];
                    }
                }
                None => {
                    break;
                }
            }
        }

        encode_from_utf16(encoding, data, &with_zeros[..]);
    }

    #[test]
    fn test_single_byte_from_two_low_surrogates() {
        let expectation = b"&#65533;&#65533;";
        let mut output = [0u8; 40];
        let mut encoder = WINDOWS_1253.new_encoder();
        let (result, read, written, had_errors) =
            encoder.encode_from_utf16(&[0xDC00u16, 0xDEDEu16], &mut output[..], true);
        assert_eq!(result, CoderResult::InputEmpty);
        assert_eq!(read, 2);
        assert_eq!(written, expectation.len());
        assert!(had_errors);
        assert_eq!(&output[..written], expectation);
    }

    // These tests are so self-referential that they are pretty useless.

    // BEGIN GENERATED CODE. PLEASE DO NOT EDIT.
    // Instead, please regenerate using generate-encoding-data.py

    #[test]
    fn test_single_byte_decode() {
        decode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866);
        decode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10);
        if cfg!(miri) {
            // Miri is too slow
            return;
        }
        decode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13);
        decode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14);
        decode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15);
        decode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16);
        decode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2);
        decode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3);
        decode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4);
        decode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5);
        decode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6);
        decode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7);
        decode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8);
        decode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r);
        decode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u);
        decode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh);
        decode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250);
        decode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251);
        decode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252);
        decode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253);
        decode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254);
        decode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255);
        decode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256);
        decode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257);
        decode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258);
        decode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874);
        decode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic);
    }

    #[test]
    fn test_single_byte_encode() {
        encode_single_byte(IBM866, &data::SINGLE_BYTE_DATA.ibm866);
        encode_single_byte(ISO_8859_10, &data::SINGLE_BYTE_DATA.iso_8859_10);
        if cfg!(miri) {
            // Miri is too slow
            return;
        }
        encode_single_byte(ISO_8859_13, &data::SINGLE_BYTE_DATA.iso_8859_13);
        encode_single_byte(ISO_8859_14, &data::SINGLE_BYTE_DATA.iso_8859_14);
        encode_single_byte(ISO_8859_15, &data::SINGLE_BYTE_DATA.iso_8859_15);
        encode_single_byte(ISO_8859_16, &data::SINGLE_BYTE_DATA.iso_8859_16);
        encode_single_byte(ISO_8859_2, &data::SINGLE_BYTE_DATA.iso_8859_2);
        encode_single_byte(ISO_8859_3, &data::SINGLE_BYTE_DATA.iso_8859_3);
        encode_single_byte(ISO_8859_4, &data::SINGLE_BYTE_DATA.iso_8859_4);
        encode_single_byte(ISO_8859_5, &data::SINGLE_BYTE_DATA.iso_8859_5);
        encode_single_byte(ISO_8859_6, &data::SINGLE_BYTE_DATA.iso_8859_6);
        encode_single_byte(ISO_8859_7, &data::SINGLE_BYTE_DATA.iso_8859_7);
        encode_single_byte(ISO_8859_8, &data::SINGLE_BYTE_DATA.iso_8859_8);
        encode_single_byte(KOI8_R, &data::SINGLE_BYTE_DATA.koi8_r);
        encode_single_byte(KOI8_U, &data::SINGLE_BYTE_DATA.koi8_u);
        encode_single_byte(MACINTOSH, &data::SINGLE_BYTE_DATA.macintosh);
        encode_single_byte(WINDOWS_1250, &data::SINGLE_BYTE_DATA.windows_1250);
        encode_single_byte(WINDOWS_1251, &data::SINGLE_BYTE_DATA.windows_1251);
        encode_single_byte(WINDOWS_1252, &data::SINGLE_BYTE_DATA.windows_1252);
        encode_single_byte(WINDOWS_1253, &data::SINGLE_BYTE_DATA.windows_1253);
        encode_single_byte(WINDOWS_1254, &data::SINGLE_BYTE_DATA.windows_1254);
        encode_single_byte(WINDOWS_1255, &data::SINGLE_BYTE_DATA.windows_1255);
        encode_single_byte(WINDOWS_1256, &data::SINGLE_BYTE_DATA.windows_1256);
        encode_single_byte(WINDOWS_1257, &data::SINGLE_BYTE_DATA.windows_1257);
        encode_single_byte(WINDOWS_1258, &data::SINGLE_BYTE_DATA.windows_1258);
        encode_single_byte(WINDOWS_874, &data::SINGLE_BYTE_DATA.windows_874);
        encode_single_byte(X_MAC_CYRILLIC, &data::SINGLE_BYTE_DATA.x_mac_cyrillic);
    }
    // END GENERATED CODE
}