1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use super::Adler32Imp;

/// Resolves update implementation if CPU supports simd128 instructions.
pub fn get_imp() -> Option<Adler32Imp> {
  get_imp_inner()
}

#[inline]
#[cfg(target_feature = "simd128")]
fn get_imp_inner() -> Option<Adler32Imp> {
  Some(imp::update)
}

#[inline]
#[cfg(not(target_feature = "simd128"))]
fn get_imp_inner() -> Option<Adler32Imp> {
  None
}

#[cfg(target_feature = "simd128")]
mod imp {
  const MOD: u32 = 65521;
  const NMAX: usize = 5552;
  const BLOCK_SIZE: usize = 32;
  const CHUNK_SIZE: usize = NMAX / BLOCK_SIZE * BLOCK_SIZE;

  #[cfg(target_arch = "wasm32")]
  use core::arch::wasm32::*;
  #[cfg(target_arch = "wasm64")]
  use core::arch::wasm64::*;

  pub fn update(a: u16, b: u16, data: &[u8]) -> (u16, u16) {
    update_imp(a, b, data)
  }

  #[inline]
  #[target_feature(enable = "simd128")]
  fn update_imp(a: u16, b: u16, data: &[u8]) -> (u16, u16) {
    let mut a = a as u32;
    let mut b = b as u32;

    let chunks = data.chunks_exact(CHUNK_SIZE);
    let remainder = chunks.remainder();
    for chunk in chunks {
      update_chunk_block(&mut a, &mut b, chunk);
    }

    update_block(&mut a, &mut b, remainder);

    (a as u16, b as u16)
  }

  fn update_chunk_block(a: &mut u32, b: &mut u32, chunk: &[u8]) {
    debug_assert_eq!(
      chunk.len(),
      CHUNK_SIZE,
      "Unexpected chunk size (expected {}, got {})",
      CHUNK_SIZE,
      chunk.len()
    );

    reduce_add_blocks(a, b, chunk);

    *a %= MOD;
    *b %= MOD;
  }

  fn update_block(a: &mut u32, b: &mut u32, chunk: &[u8]) {
    debug_assert!(
      chunk.len() <= CHUNK_SIZE,
      "Unexpected chunk size (expected <= {}, got {})",
      CHUNK_SIZE,
      chunk.len()
    );

    for byte in reduce_add_blocks(a, b, chunk) {
      *a += *byte as u32;
      *b += *a;
    }

    *a %= MOD;
    *b %= MOD;
  }

  #[inline(always)]
  fn reduce_add_blocks<'a>(a: &mut u32, b: &mut u32, chunk: &'a [u8]) -> &'a [u8] {
    if chunk.len() < BLOCK_SIZE {
      return chunk;
    }

    let blocks = chunk.chunks_exact(BLOCK_SIZE);
    let blocks_remainder = blocks.remainder();

    let weight_hi_v = get_weight_hi();
    let weight_lo_v = get_weight_lo();

    let mut p_v = u32x4(*a * blocks.len() as u32, 0, 0, 0);
    let mut a_v = u32x4(0, 0, 0, 0);
    let mut b_v = u32x4(*b, 0, 0, 0);

    for block in blocks {
      let block_ptr = block.as_ptr() as *const v128;
      let v_lo = unsafe { block_ptr.read_unaligned() };
      let v_hi = unsafe { block_ptr.add(1).read_unaligned() };

      p_v = u32x4_add(p_v, a_v);

      a_v = u32x4_add(a_v, u32x4_extadd_quarters_u8x16(v_lo));
      let mad = i32x4_dot_i8x16(v_lo, weight_lo_v);
      b_v = u32x4_add(b_v, mad);

      a_v = u32x4_add(a_v, u32x4_extadd_quarters_u8x16(v_hi));
      let mad = i32x4_dot_i8x16(v_hi, weight_hi_v);
      b_v = u32x4_add(b_v, mad);
    }

    b_v = u32x4_add(b_v, u32x4_shl(p_v, 5));

    *a += reduce_add(a_v);
    *b = reduce_add(b_v);

    blocks_remainder
  }

  #[inline(always)]
  fn i32x4_dot_i8x16(a: v128, b: v128) -> v128 {
    let a_lo = u16x8_extend_low_u8x16(a);
    let a_hi = u16x8_extend_high_u8x16(a);

    let b_lo = u16x8_extend_low_u8x16(b);
    let b_hi = u16x8_extend_high_u8x16(b);

    let lo = i32x4_dot_i16x8(a_lo, b_lo);
    let hi = i32x4_dot_i16x8(a_hi, b_hi);

    i32x4_add(lo, hi)
  }

  #[inline(always)]
  fn u32x4_extadd_quarters_u8x16(a: v128) -> v128 {
    u32x4_extadd_pairwise_u16x8(u16x8_extadd_pairwise_u8x16(a))
  }

  #[inline(always)]
  fn reduce_add(v: v128) -> u32 {
    let arr: [u32; 4] = unsafe { std::mem::transmute(v) };
    let mut sum = 0u32;
    for val in arr {
      sum = sum.wrapping_add(val);
    }
    sum
  }

  #[inline(always)]
  fn get_weight_lo() -> v128 {
    u8x16(
      32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
    )
  }

  #[inline(always)]
  fn get_weight_hi() -> v128 {
    u8x16(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
  }
}

#[cfg(test)]
mod tests {
  use rand::Rng;

  #[test]
  fn zeroes() {
    assert_sum_eq(&[]);
    assert_sum_eq(&[0]);
    assert_sum_eq(&[0, 0]);
    assert_sum_eq(&[0; 100]);
    assert_sum_eq(&[0; 1024]);
    assert_sum_eq(&[0; 512 * 1024]);
  }

  #[test]
  fn ones() {
    assert_sum_eq(&[]);
    assert_sum_eq(&[1]);
    assert_sum_eq(&[1, 1]);
    assert_sum_eq(&[1; 100]);
    assert_sum_eq(&[1; 1024]);
    assert_sum_eq(&[1; 512 * 1024]);
  }

  #[test]
  fn random() {
    let mut random = [0; 512 * 1024];
    rand::thread_rng().fill(&mut random[..]);

    assert_sum_eq(&random[..1]);
    assert_sum_eq(&random[..100]);
    assert_sum_eq(&random[..1024]);
    assert_sum_eq(&random[..512 * 1024]);
  }

  /// Example calculation from https://en.wikipedia.org/wiki/Adler-32.
  #[test]
  fn wiki() {
    assert_sum_eq(b"Wikipedia");
  }

  fn assert_sum_eq(data: &[u8]) {
    if let Some(update) = super::get_imp() {
      let (a, b) = update(1, 0, data);
      let left = u32::from(b) << 16 | u32::from(a);
      let right = adler::adler32_slice(data);

      assert_eq!(left, right, "len({})", data.len());
    }
  }
}