1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
use super::batch_semaphore as ll; // low level implementation
use super::{AcquireError, TryAcquireError};
#[cfg(all(tokio_unstable, feature = "tracing"))]
use crate::util::trace;
use std::sync::Arc;
/// Counting semaphore performing asynchronous permit acquisition.
///
/// A semaphore maintains a set of permits. Permits are used to synchronize
/// access to a shared resource. A semaphore differs from a mutex in that it
/// can allow more than one concurrent caller to access the shared resource at a
/// time.
///
/// When `acquire` is called and the semaphore has remaining permits, the
/// function immediately returns a permit. However, if no remaining permits are
/// available, `acquire` (asynchronously) waits until an outstanding permit is
/// dropped. At this point, the freed permit is assigned to the caller.
///
/// This `Semaphore` is fair, which means that permits are given out in the order
/// they were requested. This fairness is also applied when `acquire_many` gets
/// involved, so if a call to `acquire_many` at the front of the queue requests
/// more permits than currently available, this can prevent a call to `acquire`
/// from completing, even if the semaphore has enough permits complete the call
/// to `acquire`.
///
/// To use the `Semaphore` in a poll function, you can use the [`PollSemaphore`]
/// utility.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use tokio::sync::{Semaphore, TryAcquireError};
///
/// #[tokio::main]
/// async fn main() {
/// let semaphore = Semaphore::new(3);
///
/// let a_permit = semaphore.acquire().await.unwrap();
/// let two_permits = semaphore.acquire_many(2).await.unwrap();
///
/// assert_eq!(semaphore.available_permits(), 0);
///
/// let permit_attempt = semaphore.try_acquire();
/// assert_eq!(permit_attempt.err(), Some(TryAcquireError::NoPermits));
/// }
/// ```
///
/// ## Limit the number of simultaneously opened files in your program
///
/// Most operating systems have limits on the number of open file
/// handles. Even in systems without explicit limits, resource constraints
/// implicitly set an upper bound on the number of open files. If your
/// program attempts to open a large number of files and exceeds this
/// limit, it will result in an error.
///
/// This example uses a Semaphore with 100 permits. By acquiring a permit from
/// the Semaphore before accessing a file, you ensure that your program opens
/// no more than 100 files at a time. When trying to open the 101st
/// file, the program will wait until a permit becomes available before
/// proceeding to open another file.
/// ```
/// use std::io::Result;
/// use tokio::fs::File;
/// use tokio::sync::Semaphore;
/// use tokio::io::AsyncWriteExt;
///
/// static PERMITS: Semaphore = Semaphore::const_new(100);
///
/// async fn write_to_file(message: &[u8]) -> Result<()> {
/// let _permit = PERMITS.acquire().await.unwrap();
/// let mut buffer = File::create("example.txt").await?;
/// buffer.write_all(message).await?;
/// Ok(()) // Permit goes out of scope here, and is available again for acquisition
/// }
/// ```
///
/// ## Limit the number of outgoing requests being sent at the same time
///
/// In some scenarios, it might be required to limit the number of outgoing
/// requests being sent in parallel. This could be due to limits of a consumed
/// API or the network resources of the system the application is running on.
///
/// This example uses an `Arc<Semaphore>` with 10 permits. Each task spawned is
/// given a reference to the semaphore by cloning the `Arc<Semaphore>`. Before
/// a task sends a request, it must acquire a permit from the semaphore by
/// calling [`Semaphore::acquire`]. This ensures that at most 10 requests are
/// sent in parallel at any given time. After a task has sent a request, it
/// drops the permit to allow other tasks to send requests.
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// #[tokio::main]
/// async fn main() {
/// // Define maximum number of parallel requests.
/// let semaphore = Arc::new(Semaphore::new(10));
/// // Spawn many tasks that will send requests.
/// let mut jhs = Vec::new();
/// for task_id in 0..100 {
/// let semaphore = semaphore.clone();
/// let jh = tokio::spawn(async move {
/// // Acquire permit before sending request.
/// let _permit = semaphore.acquire().await.unwrap();
/// // Send the request.
/// let response = send_request(task_id).await;
/// // Drop the permit after the request has been sent.
/// drop(_permit);
/// // Handle response.
/// // ...
///
/// response
/// });
/// jhs.push(jh);
/// }
/// // Collect responses from tasks.
/// let mut responses = Vec::new();
/// for jh in jhs {
/// let response = jh.await.unwrap();
/// responses.push(response);
/// }
/// // Process responses.
/// // ...
/// }
/// # async fn send_request(task_id: usize) {
/// # // Send request.
/// # }
/// ```
///
/// ## Limit the number of incoming requests being handled at the same time
///
/// Similar to limiting the number of simultaneously opened files, network handles
/// are a limited resource. Allowing an unbounded amount of requests to be processed
/// could result in a denial-of-service, among many other issues.
///
/// This example uses an `Arc<Semaphore>` instead of a global variable.
/// To limit the number of requests that can be processed at the time,
/// we acquire a permit for each task before spawning it. Once acquired,
/// a new task is spawned; and once finished, the permit is dropped inside
/// of the task to allow others to spawn. Permits must be acquired via
/// [`Semaphore::acquire_owned`] to be movable across the task boundary.
/// (Since our semaphore is not a global variable — if it was, then `acquire` would be enough.)
///
/// ```no_run
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
/// use tokio::net::TcpListener;
///
/// #[tokio::main]
/// async fn main() -> std::io::Result<()> {
/// let semaphore = Arc::new(Semaphore::new(3));
/// let listener = TcpListener::bind("127.0.0.1:8080").await?;
///
/// loop {
/// // Acquire permit before accepting the next socket.
/// //
/// // We use `acquire_owned` so that we can move `permit` into
/// // other tasks.
/// let permit = semaphore.clone().acquire_owned().await.unwrap();
/// let (mut socket, _) = listener.accept().await?;
///
/// tokio::spawn(async move {
/// // Do work using the socket.
/// handle_connection(&mut socket).await;
/// // Drop socket while the permit is still live.
/// drop(socket);
/// // Drop the permit, so more tasks can be created.
/// drop(permit);
/// });
/// }
/// }
/// # async fn handle_connection(_socket: &mut tokio::net::TcpStream) {
/// # // Do work
/// # }
/// ```
///
/// ## Prevent tests from running in parallel
///
/// By default, Rust runs tests in the same file in parallel. However, in some
/// cases, running two tests in parallel may lead to problems. For example, this
/// can happen when tests use the same database.
///
/// Consider the following scenario:
/// 1. `test_insert`: Inserts a key-value pair into the database, then retrieves
/// the value using the same key to verify the insertion.
/// 2. `test_update`: Inserts a key, then updates the key to a new value and
/// verifies that the value has been accurately updated.
/// 3. `test_others`: A third test that doesn't modify the database state. It
/// can run in parallel with the other tests.
///
/// In this example, `test_insert` and `test_update` need to run in sequence to
/// work, but it doesn't matter which test runs first. We can leverage a
/// semaphore with a single permit to address this challenge.
///
/// ```
/// # use tokio::sync::Mutex;
/// # use std::collections::BTreeMap;
/// # struct Database {
/// # map: Mutex<BTreeMap<String, i32>>,
/// # }
/// # impl Database {
/// # pub const fn setup() -> Database {
/// # Database {
/// # map: Mutex::const_new(BTreeMap::new()),
/// # }
/// # }
/// # pub async fn insert(&self, key: &str, value: i32) {
/// # self.map.lock().await.insert(key.to_string(), value);
/// # }
/// # pub async fn update(&self, key: &str, value: i32) {
/// # self.map.lock().await
/// # .entry(key.to_string())
/// # .and_modify(|origin| *origin = value);
/// # }
/// # pub async fn delete(&self, key: &str) {
/// # self.map.lock().await.remove(key);
/// # }
/// # pub async fn get(&self, key: &str) -> i32 {
/// # *self.map.lock().await.get(key).unwrap()
/// # }
/// # }
/// use tokio::sync::Semaphore;
///
/// // Initialize a static semaphore with only one permit, which is used to
/// // prevent test_insert and test_update from running in parallel.
/// static PERMIT: Semaphore = Semaphore::const_new(1);
///
/// // Initialize the database that will be used by the subsequent tests.
/// static DB: Database = Database::setup();
///
/// #[tokio::test]
/// # async fn fake_test_insert() {}
/// async fn test_insert() {
/// // Acquire permit before proceeding. Since the semaphore has only one permit,
/// // the test will wait if the permit is already acquired by other tests.
/// let permit = PERMIT.acquire().await.unwrap();
///
/// // Do the actual test stuff with database
///
/// // Insert a key-value pair to database
/// let (key, value) = ("name", 0);
/// DB.insert(key, value).await;
///
/// // Verify that the value has been inserted correctly.
/// assert_eq!(DB.get(key).await, value);
///
/// // Undo the insertion, so the database is empty at the end of the test.
/// DB.delete(key).await;
///
/// // Drop permit. This allows the other test to start running.
/// drop(permit);
/// }
///
/// #[tokio::test]
/// # async fn fake_test_update() {}
/// async fn test_update() {
/// // Acquire permit before proceeding. Since the semaphore has only one permit,
/// // the test will wait if the permit is already acquired by other tests.
/// let permit = PERMIT.acquire().await.unwrap();
///
/// // Do the same insert.
/// let (key, value) = ("name", 0);
/// DB.insert(key, value).await;
///
/// // Update the existing value with a new one.
/// let new_value = 1;
/// DB.update(key, new_value).await;
///
/// // Verify that the value has been updated correctly.
/// assert_eq!(DB.get(key).await, new_value);
///
/// // Undo any modificattion.
/// DB.delete(key).await;
///
/// // Drop permit. This allows the other test to start running.
/// drop(permit);
/// }
///
/// #[tokio::test]
/// # async fn fake_test_others() {}
/// async fn test_others() {
/// // This test can run in parallel with test_insert and test_update,
/// // so it does not use PERMIT.
/// }
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
/// # test_insert().await;
/// # test_update().await;
/// # test_others().await;
/// # }
/// ```
///
/// ## Rate limiting using a token bucket
///
/// This example showcases the [`add_permits`] and [`SemaphorePermit::forget`] methods.
///
/// Many applications and systems have constraints on the rate at which certain
/// operations should occur. Exceeding this rate can result in suboptimal
/// performance or even errors.
///
/// This example implements rate limiting using a [token bucket]. A token bucket is a form of rate
/// limiting that doesn't kick in immediately, to allow for short bursts of incoming requests that
/// arrive at the same time.
///
/// With a token bucket, each incoming request consumes a token, and the tokens are refilled at a
/// certain rate that defines the rate limit. When a burst of requests arrives, tokens are
/// immediately given out until the bucket is empty. Once the bucket is empty, requests will have to
/// wait for new tokens to be added.
///
/// Unlike the example that limits how many requests can be handled at the same time, we do not add
/// tokens back when we finish handling a request. Instead, tokens are added only by a timer task.
///
/// Note that this implementation is suboptimal when the duration is small, because it consumes a
/// lot of cpu constantly looping and sleeping.
///
/// [token bucket]: https://en.wikipedia.org/wiki/Token_bucket
/// [`add_permits`]: crate::sync::Semaphore::add_permits
/// [`SemaphorePermit::forget`]: crate::sync::SemaphorePermit::forget
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
/// use tokio::time::{interval, Duration};
///
/// struct TokenBucket {
/// sem: Arc<Semaphore>,
/// jh: tokio::task::JoinHandle<()>,
/// }
///
/// impl TokenBucket {
/// fn new(duration: Duration, capacity: usize) -> Self {
/// let sem = Arc::new(Semaphore::new(capacity));
///
/// // refills the tokens at the end of each interval
/// let jh = tokio::spawn({
/// let sem = sem.clone();
/// let mut interval = interval(duration);
/// interval.set_missed_tick_behavior(tokio::time::MissedTickBehavior::Skip);
///
/// async move {
/// loop {
/// interval.tick().await;
///
/// if sem.available_permits() < capacity {
/// sem.add_permits(1);
/// }
/// }
/// }
/// });
///
/// Self { jh, sem }
/// }
///
/// async fn acquire(&self) {
/// // This can return an error if the semaphore is closed, but we
/// // never close it, so this error can never happen.
/// let permit = self.sem.acquire().await.unwrap();
/// // To avoid releasing the permit back to the semaphore, we use
/// // the `SemaphorePermit::forget` method.
/// permit.forget();
/// }
/// }
///
/// impl Drop for TokenBucket {
/// fn drop(&mut self) {
/// // Kill the background task so it stops taking up resources when we
/// // don't need it anymore.
/// self.jh.abort();
/// }
/// }
///
/// #[tokio::main]
/// # async fn _hidden() {}
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let capacity = 5;
/// let update_interval = Duration::from_secs_f32(1.0 / capacity as f32);
/// let bucket = TokenBucket::new(update_interval, capacity);
///
/// for _ in 0..5 {
/// bucket.acquire().await;
///
/// // do the operation
/// }
/// }
/// ```
///
/// [`PollSemaphore`]: https://docs.rs/tokio-util/latest/tokio_util/sync/struct.PollSemaphore.html
/// [`Semaphore::acquire_owned`]: crate::sync::Semaphore::acquire_owned
#[derive(Debug)]
pub struct Semaphore {
/// The low level semaphore
ll_sem: ll::Semaphore,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span,
}
/// A permit from the semaphore.
///
/// This type is created by the [`acquire`] method.
///
/// [`acquire`]: crate::sync::Semaphore::acquire()
#[must_use]
#[clippy::has_significant_drop]
#[derive(Debug)]
pub struct SemaphorePermit<'a> {
sem: &'a Semaphore,
permits: u32,
}
/// An owned permit from the semaphore.
///
/// This type is created by the [`acquire_owned`] method.
///
/// [`acquire_owned`]: crate::sync::Semaphore::acquire_owned()
#[must_use]
#[clippy::has_significant_drop]
#[derive(Debug)]
pub struct OwnedSemaphorePermit {
sem: Arc<Semaphore>,
permits: u32,
}
#[test]
#[cfg(not(loom))]
fn bounds() {
fn check_unpin<T: Unpin>() {}
// This has to take a value, since the async fn's return type is unnameable.
fn check_send_sync_val<T: Send + Sync>(_t: T) {}
fn check_send_sync<T: Send + Sync>() {}
check_unpin::<Semaphore>();
check_unpin::<SemaphorePermit<'_>>();
check_send_sync::<Semaphore>();
let semaphore = Semaphore::new(0);
check_send_sync_val(semaphore.acquire());
}
impl Semaphore {
/// The maximum number of permits which a semaphore can hold. It is `usize::MAX >> 3`.
///
/// Exceeding this limit typically results in a panic.
pub const MAX_PERMITS: usize = super::batch_semaphore::Semaphore::MAX_PERMITS;
/// Creates a new semaphore with the initial number of permits.
///
/// Panics if `permits` exceeds [`Semaphore::MAX_PERMITS`].
#[track_caller]
pub fn new(permits: usize) -> Self {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let resource_span = {
let location = std::panic::Location::caller();
tracing::trace_span!(
parent: None,
"runtime.resource",
concrete_type = "Semaphore",
kind = "Sync",
loc.file = location.file(),
loc.line = location.line(),
loc.col = location.column(),
inherits_child_attrs = true,
)
};
#[cfg(all(tokio_unstable, feature = "tracing"))]
let ll_sem = resource_span.in_scope(|| ll::Semaphore::new(permits));
#[cfg(any(not(tokio_unstable), not(feature = "tracing")))]
let ll_sem = ll::Semaphore::new(permits);
Self {
ll_sem,
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span,
}
}
/// Creates a new semaphore with the initial number of permits.
///
/// When using the `tracing` [unstable feature], a `Semaphore` created with
/// `const_new` will not be instrumented. As such, it will not be visible
/// in [`tokio-console`]. Instead, [`Semaphore::new`] should be used to
/// create an instrumented object if that is needed.
///
/// # Examples
///
/// ```
/// use tokio::sync::Semaphore;
///
/// static SEM: Semaphore = Semaphore::const_new(10);
/// ```
///
/// [`tokio-console`]: https://github.com/tokio-rs/console
/// [unstable feature]: crate#unstable-features
#[cfg(not(all(loom, test)))]
pub const fn const_new(permits: usize) -> Self {
Self {
ll_sem: ll::Semaphore::const_new(permits),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span::none(),
}
}
/// Creates a new closed semaphore with 0 permits.
pub(crate) fn new_closed() -> Self {
Self {
ll_sem: ll::Semaphore::new_closed(),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span::none(),
}
}
/// Creates a new closed semaphore with 0 permits.
#[cfg(not(all(loom, test)))]
pub(crate) const fn const_new_closed() -> Self {
Self {
ll_sem: ll::Semaphore::const_new_closed(),
#[cfg(all(tokio_unstable, feature = "tracing"))]
resource_span: tracing::Span::none(),
}
}
/// Returns the current number of available permits.
pub fn available_permits(&self) -> usize {
self.ll_sem.available_permits()
}
/// Adds `n` new permits to the semaphore.
///
/// The maximum number of permits is [`Semaphore::MAX_PERMITS`], and this function will panic if the limit is exceeded.
pub fn add_permits(&self, n: usize) {
self.ll_sem.release(n);
}
/// Decrease a semaphore's permits by a maximum of `n`.
///
/// If there are insufficient permits and it's not possible to reduce by `n`,
/// return the number of permits that were actually reduced.
pub fn forget_permits(&self, n: usize) -> usize {
self.ll_sem.forget_permits(n)
}
/// Acquires a permit from the semaphore.
///
/// If the semaphore has been closed, this returns an [`AcquireError`].
/// Otherwise, this returns a [`SemaphorePermit`] representing the
/// acquired permit.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute permits in the order they
/// were requested. Cancelling a call to `acquire` makes you lose your place
/// in the queue.
///
/// # Examples
///
/// ```
/// use tokio::sync::Semaphore;
///
/// #[tokio::main]
/// async fn main() {
/// let semaphore = Semaphore::new(2);
///
/// let permit_1 = semaphore.acquire().await.unwrap();
/// assert_eq!(semaphore.available_permits(), 1);
///
/// let permit_2 = semaphore.acquire().await.unwrap();
/// assert_eq!(semaphore.available_permits(), 0);
///
/// drop(permit_1);
/// assert_eq!(semaphore.available_permits(), 1);
/// }
/// ```
///
/// [`AcquireError`]: crate::sync::AcquireError
/// [`SemaphorePermit`]: crate::sync::SemaphorePermit
pub async fn acquire(&self) -> Result<SemaphorePermit<'_>, AcquireError> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = trace::async_op(
|| self.ll_sem.acquire(1),
self.resource_span.clone(),
"Semaphore::acquire",
"poll",
true,
);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = self.ll_sem.acquire(1);
inner.await?;
Ok(SemaphorePermit {
sem: self,
permits: 1,
})
}
/// Acquires `n` permits from the semaphore.
///
/// If the semaphore has been closed, this returns an [`AcquireError`].
/// Otherwise, this returns a [`SemaphorePermit`] representing the
/// acquired permits.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute permits in the order they
/// were requested. Cancelling a call to `acquire_many` makes you lose your
/// place in the queue.
///
/// # Examples
///
/// ```
/// use tokio::sync::Semaphore;
///
/// #[tokio::main]
/// async fn main() {
/// let semaphore = Semaphore::new(5);
///
/// let permit = semaphore.acquire_many(3).await.unwrap();
/// assert_eq!(semaphore.available_permits(), 2);
/// }
/// ```
///
/// [`AcquireError`]: crate::sync::AcquireError
/// [`SemaphorePermit`]: crate::sync::SemaphorePermit
pub async fn acquire_many(&self, n: u32) -> Result<SemaphorePermit<'_>, AcquireError> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
trace::async_op(
|| self.ll_sem.acquire(n as usize),
self.resource_span.clone(),
"Semaphore::acquire_many",
"poll",
true,
)
.await?;
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
self.ll_sem.acquire(n as usize).await?;
Ok(SemaphorePermit {
sem: self,
permits: n,
})
}
/// Tries to acquire a permit from the semaphore.
///
/// If the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
/// and a [`TryAcquireError::NoPermits`] if there are no permits left. Otherwise,
/// this returns a [`SemaphorePermit`] representing the acquired permits.
///
/// # Examples
///
/// ```
/// use tokio::sync::{Semaphore, TryAcquireError};
///
/// # fn main() {
/// let semaphore = Semaphore::new(2);
///
/// let permit_1 = semaphore.try_acquire().unwrap();
/// assert_eq!(semaphore.available_permits(), 1);
///
/// let permit_2 = semaphore.try_acquire().unwrap();
/// assert_eq!(semaphore.available_permits(), 0);
///
/// let permit_3 = semaphore.try_acquire();
/// assert_eq!(permit_3.err(), Some(TryAcquireError::NoPermits));
/// # }
/// ```
///
/// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
/// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
/// [`SemaphorePermit`]: crate::sync::SemaphorePermit
pub fn try_acquire(&self) -> Result<SemaphorePermit<'_>, TryAcquireError> {
match self.ll_sem.try_acquire(1) {
Ok(()) => Ok(SemaphorePermit {
sem: self,
permits: 1,
}),
Err(e) => Err(e),
}
}
/// Tries to acquire `n` permits from the semaphore.
///
/// If the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
/// and a [`TryAcquireError::NoPermits`] if there are not enough permits left.
/// Otherwise, this returns a [`SemaphorePermit`] representing the acquired permits.
///
/// # Examples
///
/// ```
/// use tokio::sync::{Semaphore, TryAcquireError};
///
/// # fn main() {
/// let semaphore = Semaphore::new(4);
///
/// let permit_1 = semaphore.try_acquire_many(3).unwrap();
/// assert_eq!(semaphore.available_permits(), 1);
///
/// let permit_2 = semaphore.try_acquire_many(2);
/// assert_eq!(permit_2.err(), Some(TryAcquireError::NoPermits));
/// # }
/// ```
///
/// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
/// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
/// [`SemaphorePermit`]: crate::sync::SemaphorePermit
pub fn try_acquire_many(&self, n: u32) -> Result<SemaphorePermit<'_>, TryAcquireError> {
match self.ll_sem.try_acquire(n as usize) {
Ok(()) => Ok(SemaphorePermit {
sem: self,
permits: n,
}),
Err(e) => Err(e),
}
}
/// Acquires a permit from the semaphore.
///
/// The semaphore must be wrapped in an [`Arc`] to call this method.
/// If the semaphore has been closed, this returns an [`AcquireError`].
/// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
/// acquired permit.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute permits in the order they
/// were requested. Cancelling a call to `acquire_owned` makes you lose your
/// place in the queue.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// #[tokio::main]
/// async fn main() {
/// let semaphore = Arc::new(Semaphore::new(3));
/// let mut join_handles = Vec::new();
///
/// for _ in 0..5 {
/// let permit = semaphore.clone().acquire_owned().await.unwrap();
/// join_handles.push(tokio::spawn(async move {
/// // perform task...
/// // explicitly own `permit` in the task
/// drop(permit);
/// }));
/// }
///
/// for handle in join_handles {
/// handle.await.unwrap();
/// }
/// }
/// ```
///
/// [`Arc`]: std::sync::Arc
/// [`AcquireError`]: crate::sync::AcquireError
/// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
pub async fn acquire_owned(self: Arc<Self>) -> Result<OwnedSemaphorePermit, AcquireError> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = trace::async_op(
|| self.ll_sem.acquire(1),
self.resource_span.clone(),
"Semaphore::acquire_owned",
"poll",
true,
);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = self.ll_sem.acquire(1);
inner.await?;
Ok(OwnedSemaphorePermit {
sem: self,
permits: 1,
})
}
/// Acquires `n` permits from the semaphore.
///
/// The semaphore must be wrapped in an [`Arc`] to call this method.
/// If the semaphore has been closed, this returns an [`AcquireError`].
/// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
/// acquired permit.
///
/// # Cancel safety
///
/// This method uses a queue to fairly distribute permits in the order they
/// were requested. Cancelling a call to `acquire_many_owned` makes you lose
/// your place in the queue.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// #[tokio::main]
/// async fn main() {
/// let semaphore = Arc::new(Semaphore::new(10));
/// let mut join_handles = Vec::new();
///
/// for _ in 0..5 {
/// let permit = semaphore.clone().acquire_many_owned(2).await.unwrap();
/// join_handles.push(tokio::spawn(async move {
/// // perform task...
/// // explicitly own `permit` in the task
/// drop(permit);
/// }));
/// }
///
/// for handle in join_handles {
/// handle.await.unwrap();
/// }
/// }
/// ```
///
/// [`Arc`]: std::sync::Arc
/// [`AcquireError`]: crate::sync::AcquireError
/// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
pub async fn acquire_many_owned(
self: Arc<Self>,
n: u32,
) -> Result<OwnedSemaphorePermit, AcquireError> {
#[cfg(all(tokio_unstable, feature = "tracing"))]
let inner = trace::async_op(
|| self.ll_sem.acquire(n as usize),
self.resource_span.clone(),
"Semaphore::acquire_many_owned",
"poll",
true,
);
#[cfg(not(all(tokio_unstable, feature = "tracing")))]
let inner = self.ll_sem.acquire(n as usize);
inner.await?;
Ok(OwnedSemaphorePermit {
sem: self,
permits: n,
})
}
/// Tries to acquire a permit from the semaphore.
///
/// The semaphore must be wrapped in an [`Arc`] to call this method. If
/// the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
/// and a [`TryAcquireError::NoPermits`] if there are no permits left.
/// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
/// acquired permit.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::{Semaphore, TryAcquireError};
///
/// # fn main() {
/// let semaphore = Arc::new(Semaphore::new(2));
///
/// let permit_1 = Arc::clone(&semaphore).try_acquire_owned().unwrap();
/// assert_eq!(semaphore.available_permits(), 1);
///
/// let permit_2 = Arc::clone(&semaphore).try_acquire_owned().unwrap();
/// assert_eq!(semaphore.available_permits(), 0);
///
/// let permit_3 = semaphore.try_acquire_owned();
/// assert_eq!(permit_3.err(), Some(TryAcquireError::NoPermits));
/// # }
/// ```
///
/// [`Arc`]: std::sync::Arc
/// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
/// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
/// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
pub fn try_acquire_owned(self: Arc<Self>) -> Result<OwnedSemaphorePermit, TryAcquireError> {
match self.ll_sem.try_acquire(1) {
Ok(()) => Ok(OwnedSemaphorePermit {
sem: self,
permits: 1,
}),
Err(e) => Err(e),
}
}
/// Tries to acquire `n` permits from the semaphore.
///
/// The semaphore must be wrapped in an [`Arc`] to call this method. If
/// the semaphore has been closed, this returns a [`TryAcquireError::Closed`]
/// and a [`TryAcquireError::NoPermits`] if there are no permits left.
/// Otherwise, this returns a [`OwnedSemaphorePermit`] representing the
/// acquired permit.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::{Semaphore, TryAcquireError};
///
/// # fn main() {
/// let semaphore = Arc::new(Semaphore::new(4));
///
/// let permit_1 = Arc::clone(&semaphore).try_acquire_many_owned(3).unwrap();
/// assert_eq!(semaphore.available_permits(), 1);
///
/// let permit_2 = semaphore.try_acquire_many_owned(2);
/// assert_eq!(permit_2.err(), Some(TryAcquireError::NoPermits));
/// # }
/// ```
///
/// [`Arc`]: std::sync::Arc
/// [`TryAcquireError::Closed`]: crate::sync::TryAcquireError::Closed
/// [`TryAcquireError::NoPermits`]: crate::sync::TryAcquireError::NoPermits
/// [`OwnedSemaphorePermit`]: crate::sync::OwnedSemaphorePermit
pub fn try_acquire_many_owned(
self: Arc<Self>,
n: u32,
) -> Result<OwnedSemaphorePermit, TryAcquireError> {
match self.ll_sem.try_acquire(n as usize) {
Ok(()) => Ok(OwnedSemaphorePermit {
sem: self,
permits: n,
}),
Err(e) => Err(e),
}
}
/// Closes the semaphore.
///
/// This prevents the semaphore from issuing new permits and notifies all pending waiters.
///
/// # Examples
///
/// ```
/// use tokio::sync::Semaphore;
/// use std::sync::Arc;
/// use tokio::sync::TryAcquireError;
///
/// #[tokio::main]
/// async fn main() {
/// let semaphore = Arc::new(Semaphore::new(1));
/// let semaphore2 = semaphore.clone();
///
/// tokio::spawn(async move {
/// let permit = semaphore.acquire_many(2).await;
/// assert!(permit.is_err());
/// println!("waiter received error");
/// });
///
/// println!("closing semaphore");
/// semaphore2.close();
///
/// // Cannot obtain more permits
/// assert_eq!(semaphore2.try_acquire().err(), Some(TryAcquireError::Closed))
/// }
/// ```
pub fn close(&self) {
self.ll_sem.close();
}
/// Returns true if the semaphore is closed
pub fn is_closed(&self) -> bool {
self.ll_sem.is_closed()
}
}
impl<'a> SemaphorePermit<'a> {
/// Forgets the permit **without** releasing it back to the semaphore.
/// This can be used to reduce the amount of permits available from a
/// semaphore.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// let sem = Arc::new(Semaphore::new(10));
/// {
/// let permit = sem.try_acquire_many(5).unwrap();
/// assert_eq!(sem.available_permits(), 5);
/// permit.forget();
/// }
///
/// // Since we forgot the permit, available permits won't go back to its initial value
/// // even after the permit is dropped.
/// assert_eq!(sem.available_permits(), 5);
/// ```
pub fn forget(mut self) {
self.permits = 0;
}
/// Merge two [`SemaphorePermit`] instances together, consuming `other`
/// without releasing the permits it holds.
///
/// Permits held by both `self` and `other` are released when `self` drops.
///
/// # Panics
///
/// This function panics if permits from different [`Semaphore`] instances
/// are merged.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// let sem = Arc::new(Semaphore::new(10));
/// let mut permit = sem.try_acquire().unwrap();
///
/// for _ in 0..9 {
/// let _permit = sem.try_acquire().unwrap();
/// // Merge individual permits into a single one.
/// permit.merge(_permit)
/// }
///
/// assert_eq!(sem.available_permits(), 0);
///
/// // Release all permits in a single batch.
/// drop(permit);
///
/// assert_eq!(sem.available_permits(), 10);
/// ```
#[track_caller]
pub fn merge(&mut self, mut other: Self) {
assert!(
std::ptr::eq(self.sem, other.sem),
"merging permits from different semaphore instances"
);
self.permits += other.permits;
other.permits = 0;
}
/// Splits `n` permits from `self` and returns a new [`SemaphorePermit`] instance that holds `n` permits.
///
/// If there are insufficient permits and it's not possible to reduce by `n`, returns `None`.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// let sem = Arc::new(Semaphore::new(3));
///
/// let mut p1 = sem.try_acquire_many(3).unwrap();
/// let p2 = p1.split(1).unwrap();
///
/// assert_eq!(p1.num_permits(), 2);
/// assert_eq!(p2.num_permits(), 1);
/// ```
pub fn split(&mut self, n: usize) -> Option<Self> {
let n = u32::try_from(n).ok()?;
if n > self.permits {
return None;
}
self.permits -= n;
Some(Self {
sem: self.sem,
permits: n,
})
}
/// Returns the number of permits held by `self`.
pub fn num_permits(&self) -> usize {
self.permits as usize
}
}
impl OwnedSemaphorePermit {
/// Forgets the permit **without** releasing it back to the semaphore.
/// This can be used to reduce the amount of permits available from a
/// semaphore.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// let sem = Arc::new(Semaphore::new(10));
/// {
/// let permit = sem.clone().try_acquire_many_owned(5).unwrap();
/// assert_eq!(sem.available_permits(), 5);
/// permit.forget();
/// }
///
/// // Since we forgot the permit, available permits won't go back to its initial value
/// // even after the permit is dropped.
/// assert_eq!(sem.available_permits(), 5);
/// ```
pub fn forget(mut self) {
self.permits = 0;
}
/// Merge two [`OwnedSemaphorePermit`] instances together, consuming `other`
/// without releasing the permits it holds.
///
/// Permits held by both `self` and `other` are released when `self` drops.
///
/// # Panics
///
/// This function panics if permits from different [`Semaphore`] instances
/// are merged.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// let sem = Arc::new(Semaphore::new(10));
/// let mut permit = sem.clone().try_acquire_owned().unwrap();
///
/// for _ in 0..9 {
/// let _permit = sem.clone().try_acquire_owned().unwrap();
/// // Merge individual permits into a single one.
/// permit.merge(_permit)
/// }
///
/// assert_eq!(sem.available_permits(), 0);
///
/// // Release all permits in a single batch.
/// drop(permit);
///
/// assert_eq!(sem.available_permits(), 10);
/// ```
#[track_caller]
pub fn merge(&mut self, mut other: Self) {
assert!(
Arc::ptr_eq(&self.sem, &other.sem),
"merging permits from different semaphore instances"
);
self.permits += other.permits;
other.permits = 0;
}
/// Splits `n` permits from `self` and returns a new [`OwnedSemaphorePermit`] instance that holds `n` permits.
///
/// If there are insufficient permits and it's not possible to reduce by `n`, returns `None`.
///
/// # Note
///
/// It will clone the owned `Arc<Semaphore>` to construct the new instance.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use tokio::sync::Semaphore;
///
/// let sem = Arc::new(Semaphore::new(3));
///
/// let mut p1 = sem.try_acquire_many_owned(3).unwrap();
/// let p2 = p1.split(1).unwrap();
///
/// assert_eq!(p1.num_permits(), 2);
/// assert_eq!(p2.num_permits(), 1);
/// ```
pub fn split(&mut self, n: usize) -> Option<Self> {
let n = u32::try_from(n).ok()?;
if n > self.permits {
return None;
}
self.permits -= n;
Some(Self {
sem: self.sem.clone(),
permits: n,
})
}
/// Returns the [`Semaphore`] from which this permit was acquired.
pub fn semaphore(&self) -> &Arc<Semaphore> {
&self.sem
}
/// Returns the number of permits held by `self`.
pub fn num_permits(&self) -> usize {
self.permits as usize
}
}
impl Drop for SemaphorePermit<'_> {
fn drop(&mut self) {
self.sem.add_permits(self.permits as usize);
}
}
impl Drop for OwnedSemaphorePermit {
fn drop(&mut self) {
self.sem.add_permits(self.permits as usize);
}
}