1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
#![deny(
missing_docs,
missing_debug_implementations,
rust_2018_idioms,
unused_imports,
dead_code
)]
#![cfg_attr(docsrs, feature(doc_cfg))]
// Disallow warnings when running tests.
#![cfg_attr(test, deny(warnings))]
// Disallow warnings in examples.
#![doc(test(attr(deny(warnings))))]
//! Mio is a fast, low-level I/O library for Rust focusing on non-blocking APIs
//! and event notification for building high performance I/O apps with as little
//! overhead as possible over the OS abstractions.
//!
//! # Usage
//!
//! Using Mio starts by creating a [`Poll`], which reads events from the OS and
//! puts them into [`Events`]. You can handle I/O events from the OS with it.
//!
//! For more detail, see [`Poll`].
//!
//! [`Poll`]: ../mio/struct.Poll.html
//! [`Events`]: ../mio/event/struct.Events.html
//!
//! ## Examples
//!
//! Examples can found in the `examples` directory of the source code, or [on
//! GitHub].
//!
//! [on GitHub]: https://github.com/tokio-rs/mio/tree/master/examples
//!
//! ## Guide
//!
//! A getting started guide is available in the [`guide`] module.
//!
//! ## Available features
//!
//! The available features are described in the [`features`] module.
// macros used internally
#[macro_use]
mod macros;
mod interest;
mod poll;
mod sys;
mod token;
#[cfg(not(target_os = "wasi"))]
mod waker;
pub mod event;
cfg_io_source! {
mod io_source;
}
cfg_net! {
pub mod net;
}
#[doc(no_inline)]
pub use event::Events;
pub use interest::Interest;
pub use poll::{Poll, Registry};
pub use token::Token;
#[cfg(not(target_os = "wasi"))]
pub use waker::Waker;
#[cfg(all(unix, feature = "os-ext"))]
#[cfg_attr(docsrs, doc(cfg(all(unix, feature = "os-ext"))))]
pub mod unix {
//! Unix only extensions.
pub mod pipe {
//! Unix pipe.
//!
//! See the [`new`] function for documentation.
pub use crate::sys::pipe::{new, Receiver, Sender};
}
pub use crate::sys::SourceFd;
}
#[cfg(all(target_os = "hermit", feature = "os-ext"))]
#[cfg_attr(docsrs, doc(cfg(all(target_os = "hermit", feature = "os-ext"))))]
pub mod hermit {
//! Hermit only extensions.
pub use crate::sys::SourceFd;
}
#[cfg(all(windows, feature = "os-ext"))]
#[cfg_attr(docsrs, doc(cfg(all(windows, feature = "os-ext"))))]
pub mod windows {
//! Windows only extensions.
pub use crate::sys::named_pipe::NamedPipe;
}
pub mod features {
//! # Mio's optional features.
//!
//! This document describes the available features in Mio.
//!
#![cfg_attr(feature = "os-poll", doc = "## `os-poll` (enabled)")]
#![cfg_attr(not(feature = "os-poll"), doc = "## `os-poll` (disabled)")]
//!
//! Mio by default provides only a shell implementation that `panic!`s the
//! moment it is actually run. To run it requires OS support, this is
//! enabled by activating the `os-poll` feature.
//!
//! This makes `Poll`, `Registry` and `Waker` functional.
//!
#![cfg_attr(feature = "os-ext", doc = "## `os-ext` (enabled)")]
#![cfg_attr(not(feature = "os-ext"), doc = "## `os-ext` (disabled)")]
//!
//! `os-ext` enables additional OS specific facilities. These facilities can
//! be found in the `unix` and `windows` module.
//!
#![cfg_attr(feature = "net", doc = "## Network types (enabled)")]
#![cfg_attr(not(feature = "net"), doc = "## Network types (disabled)")]
//!
//! The `net` feature enables networking primitives in the `net` module.
}
pub mod guide {
//! # Getting started guide.
//!
//! In this guide we'll do the following:
//!
//! 1. Create a [`Poll`] instance (and learn what it is).
//! 2. Register an [event source].
//! 3. Create an event loop.
//!
//! At the end you'll have a very small (but quick) TCP server that accepts
//! connections and then drops (disconnects) them.
//!
//! ## 1. Creating a `Poll` instance
//!
//! Using Mio starts by creating a [`Poll`] instance, which monitors events
//! from the OS and puts them into [`Events`]. This allows us to execute I/O
//! operations based on what operations are ready.
//!
//! [`Poll`]: ../struct.Poll.html
//! [`Events`]: ../event/struct.Events.html
//!
#![cfg_attr(feature = "os-poll", doc = "```")]
#![cfg_attr(not(feature = "os-poll"), doc = "```ignore")]
//! # use mio::{Poll, Events};
//! # fn main() -> std::io::Result<()> {
//! // `Poll` allows for polling of readiness events.
//! let poll = Poll::new()?;
//! // `Events` is collection of readiness `Event`s and can be filled by
//! // calling `Poll::poll`.
//! let events = Events::with_capacity(128);
//! # drop((poll, events));
//! # Ok(())
//! # }
//! ```
//!
//! For example if we're using a [`TcpListener`], we'll only want to
//! attempt to accept an incoming connection *iff* any connections are
//! queued and ready to be accepted. We don't want to waste our time if no
//! connections are ready.
//!
//! [`TcpListener`]: ../net/struct.TcpListener.html
//!
//! ## 2. Registering event source
//!
//! After we've created a [`Poll`] instance that monitors events from the OS
//! for us, we need to provide it with a source of events. This is done by
//! registering an [event source]. As the name “event source” suggests it is
//! a source of events which can be polled using a `Poll` instance. On Unix
//! systems this is usually a file descriptor, or a socket/handle on
//! Windows.
//!
//! In the example below we'll use a [`TcpListener`] for which we'll receive
//! an event (from [`Poll`]) once a connection is ready to be accepted.
//!
//! [event source]: ../event/trait.Source.html
//!
#![cfg_attr(all(feature = "os-poll", feature = "net"), doc = "```")]
#![cfg_attr(not(all(feature = "os-poll", feature = "net")), doc = "```ignore")]
//! # use mio::net::TcpListener;
//! # use mio::{Poll, Token, Interest};
//! # fn main() -> std::io::Result<()> {
//! # let poll = Poll::new()?;
//! # let address = "127.0.0.1:0".parse().unwrap();
//! // Create a `TcpListener`, binding it to `address`.
//! let mut listener = TcpListener::bind(address)?;
//!
//! // Next we register it with `Poll` to receive events for it. The `SERVER`
//! // `Token` is used to determine that we received an event for the listener
//! // later on.
//! const SERVER: Token = Token(0);
//! poll.registry().register(&mut listener, SERVER, Interest::READABLE)?;
//! # Ok(())
//! # }
//! ```
//!
//! Multiple event sources can be [registered] (concurrently), so we can
//! monitor multiple sources at a time.
//!
//! [registered]: ../struct.Registry.html#method.register
//!
//! ## 3. Creating the event loop
//!
//! After we've created a [`Poll`] instance and registered one or more
//! [event sources] with it, we can [poll] it for events. Polling for events
//! is simple, we need a container to store the events: [`Events`] and need
//! to do something based on the polled events (this part is up to you, we
//! can't do it all!). If we do this in a loop we've got ourselves an event
//! loop.
//!
//! The example below shows the event loop in action, completing our small
//! TCP server.
//!
//! [poll]: ../struct.Poll.html#method.poll
//! [event sources]: ../event/trait.Source.html
//!
#![cfg_attr(all(feature = "os-poll", feature = "net"), doc = "```")]
#![cfg_attr(not(all(feature = "os-poll", feature = "net")), doc = "```ignore")]
//! # use std::io;
//! # use std::time::Duration;
//! # use mio::net::TcpListener;
//! # use mio::{Poll, Token, Interest, Events};
//! # fn main() -> io::Result<()> {
//! # let mut poll = Poll::new()?;
//! # let mut events = Events::with_capacity(128);
//! # let address = "127.0.0.1:0".parse().unwrap();
//! # let mut listener = TcpListener::bind(address)?;
//! # const SERVER: Token = Token(0);
//! # poll.registry().register(&mut listener, SERVER, Interest::READABLE)?;
//! // Start our event loop.
//! loop {
//! // Poll the OS for events, waiting at most 100 milliseconds.
//! poll.poll(&mut events, Some(Duration::from_millis(100)))?;
//!
//! // Process each event.
//! for event in events.iter() {
//! // We can use the token we previously provided to `register` to
//! // determine for which type the event is.
//! match event.token() {
//! SERVER => loop {
//! // One or more connections are ready, so we'll attempt to
//! // accept them (in a loop).
//! match listener.accept() {
//! Ok((connection, address)) => {
//! println!("Got a connection from: {}", address);
//! # drop(connection);
//! },
//! // A "would block error" is returned if the operation
//! // is not ready, so we'll stop trying to accept
//! // connections.
//! Err(ref err) if would_block(err) => break,
//! Err(err) => return Err(err),
//! }
//! }
//! # _ => unreachable!(),
//! }
//! }
//! # return Ok(());
//! }
//!
//! fn would_block(err: &io::Error) -> bool {
//! err.kind() == io::ErrorKind::WouldBlock
//! }
//! # }
//! ```
}