1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
use crate::io::util::flush::{flush, Flush};
use crate::io::util::shutdown::{shutdown, Shutdown};
use crate::io::util::write::{write, Write};
use crate::io::util::write_all::{write_all, WriteAll};
use crate::io::util::write_all_buf::{write_all_buf, WriteAllBuf};
use crate::io::util::write_buf::{write_buf, WriteBuf};
use crate::io::util::write_int::{WriteF32, WriteF32Le, WriteF64, WriteF64Le};
use crate::io::util::write_int::{
    WriteI128, WriteI128Le, WriteI16, WriteI16Le, WriteI32, WriteI32Le, WriteI64, WriteI64Le,
    WriteI8,
};
use crate::io::util::write_int::{
    WriteU128, WriteU128Le, WriteU16, WriteU16Le, WriteU32, WriteU32Le, WriteU64, WriteU64Le,
    WriteU8,
};
use crate::io::util::write_vectored::{write_vectored, WriteVectored};
use crate::io::AsyncWrite;
use std::io::IoSlice;

use bytes::Buf;

cfg_io_util! {
    /// Defines numeric writer.
    macro_rules! write_impl {
        (
            $(
                $(#[$outer:meta])*
                fn $name:ident(&mut self, n: $ty:ty) -> $($fut:ident)*;
            )*
        ) => {
            $(
                $(#[$outer])*
                fn $name(&mut self, n: $ty) -> $($fut)*<&mut Self> where Self: Unpin {
                    $($fut)*::new(self, n)
                }
            )*
        }
    }

    /// Writes bytes to a sink.
    ///
    /// Implemented as an extension trait, adding utility methods to all
    /// [`AsyncWrite`] types. Callers will tend to import this trait instead of
    /// [`AsyncWrite`].
    ///
    /// ```no_run
    /// use tokio::io::{self, AsyncWriteExt};
    /// use tokio::fs::File;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let data = b"some bytes";
    ///
    ///     let mut pos = 0;
    ///     let mut buffer = File::create("foo.txt").await?;
    ///
    ///     while pos < data.len() {
    ///         let bytes_written = buffer.write(&data[pos..]).await?;
    ///         pos += bytes_written;
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// See [module][crate::io] documentation for more details.
    ///
    /// [`AsyncWrite`]: AsyncWrite
    pub trait AsyncWriteExt: AsyncWrite {
        /// Writes a buffer into this writer, returning how many bytes were
        /// written.
        ///
        /// Equivalent to:
        ///
        /// ```ignore
        /// async fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
        /// ```
        ///
        /// This function will attempt to write the entire contents of `buf`, but
        /// the entire write may not succeed, or the write may also generate an
        /// error. A call to `write` represents *at most one* attempt to write to
        /// any wrapped object.
        ///
        /// # Return
        ///
        /// If the return value is `Ok(n)` then it must be guaranteed that `n <=
        /// buf.len()`. A return value of `0` typically means that the
        /// underlying object is no longer able to accept bytes and will likely
        /// not be able to in the future as well, or that the buffer provided is
        /// empty.
        ///
        /// # Errors
        ///
        /// Each call to `write` may generate an I/O error indicating that the
        /// operation could not be completed. If an error is returned then no bytes
        /// in the buffer were written to this writer.
        ///
        /// It is **not** considered an error if the entire buffer could not be
        /// written to this writer.
        ///
        /// # Cancel safety
        ///
        /// This method is cancellation safe in the sense that if it is used as
        /// the event in a [`tokio::select!`](crate::select) statement and some
        /// other branch completes first, then it is guaranteed that no data was
        /// written to this `AsyncWrite`.
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::io::{self, AsyncWriteExt};
        /// use tokio::fs::File;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     let mut file = File::create("foo.txt").await?;
        ///
        ///     // Writes some prefix of the byte string, not necessarily all of it.
        ///     file.write(b"some bytes").await?;
        ///     file.flush().await?;
        ///     Ok(())
        /// }
        /// ```
        fn write<'a>(&'a mut self, src: &'a [u8]) -> Write<'a, Self>
        where
            Self: Unpin,
        {
            write(self, src)
        }

        /// Like [`write`], except that it writes from a slice of buffers.
        ///
        /// Equivalent to:
        ///
        /// ```ignore
        /// async fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize>;
        /// ```
        ///
        /// See [`AsyncWrite::poll_write_vectored`] for more details.
        ///
        /// # Cancel safety
        ///
        /// This method is cancellation safe in the sense that if it is used as
        /// the event in a [`tokio::select!`](crate::select) statement and some
        /// other branch completes first, then it is guaranteed that no data was
        /// written to this `AsyncWrite`.
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::io::{self, AsyncWriteExt};
        /// use tokio::fs::File;
        /// use std::io::IoSlice;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     let mut file = File::create("foo.txt").await?;
        ///
        ///     let bufs: &[_] = &[
        ///         IoSlice::new(b"hello"),
        ///         IoSlice::new(b" "),
        ///         IoSlice::new(b"world"),
        ///     ];
        ///
        ///     file.write_vectored(&bufs).await?;
        ///     file.flush().await?;
        ///
        ///     Ok(())
        /// }
        /// ```
        ///
        /// [`write`]: AsyncWriteExt::write
        fn write_vectored<'a, 'b>(&'a mut self, bufs: &'a [IoSlice<'b>]) -> WriteVectored<'a, 'b, Self>
        where
            Self: Unpin,
        {
            write_vectored(self, bufs)
        }

        /// Writes a buffer into this writer, advancing the buffer's internal
        /// cursor.
        ///
        /// Equivalent to:
        ///
        /// ```ignore
        /// async fn write_buf<B: Buf>(&mut self, buf: &mut B) -> io::Result<usize>;
        /// ```
        ///
        /// This function will attempt to write the entire contents of `buf`, but
        /// the entire write may not succeed, or the write may also generate an
        /// error. After the operation completes, the buffer's
        /// internal cursor is advanced by the number of bytes written. A
        /// subsequent call to `write_buf` using the **same** `buf` value will
        /// resume from the point that the first call to `write_buf` completed.
        /// A call to `write_buf` represents *at most one* attempt to write to any
        /// wrapped object.
        ///
        /// # Return
        ///
        /// If the return value is `Ok(n)` then it must be guaranteed that `n <=
        /// buf.len()`. A return value of `0` typically means that the
        /// underlying object is no longer able to accept bytes and will likely
        /// not be able to in the future as well, or that the buffer provided is
        /// empty.
        ///
        /// # Errors
        ///
        /// Each call to `write` may generate an I/O error indicating that the
        /// operation could not be completed. If an error is returned then no bytes
        /// in the buffer were written to this writer.
        ///
        /// It is **not** considered an error if the entire buffer could not be
        /// written to this writer.
        ///
        /// # Cancel safety
        ///
        /// This method is cancellation safe in the sense that if it is used as
        /// the event in a [`tokio::select!`](crate::select) statement and some
        /// other branch completes first, then it is guaranteed that no data was
        /// written to this `AsyncWrite`.
        ///
        /// # Examples
        ///
        /// [`File`] implements [`AsyncWrite`] and [`Cursor`]`<&[u8]>` implements [`Buf`]:
        ///
        /// [`File`]: crate::fs::File
        /// [`Buf`]: bytes::Buf
        /// [`Cursor`]: std::io::Cursor
        ///
        /// ```no_run
        /// use tokio::io::{self, AsyncWriteExt};
        /// use tokio::fs::File;
        ///
        /// use bytes::Buf;
        /// use std::io::Cursor;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     let mut file = File::create("foo.txt").await?;
        ///     let mut buffer = Cursor::new(b"data to write");
        ///
        ///     // Loop until the entire contents of the buffer are written to
        ///     // the file.
        ///     while buffer.has_remaining() {
        ///         // Writes some prefix of the byte string, not necessarily
        ///         // all of it.
        ///         file.write_buf(&mut buffer).await?;
        ///     }
        ///     file.flush().await?;
        ///
        ///     Ok(())
        /// }
        /// ```
        fn write_buf<'a, B>(&'a mut self, src: &'a mut B) -> WriteBuf<'a, Self, B>
        where
            Self: Sized + Unpin,
            B: Buf,
        {
            write_buf(self, src)
        }

        /// Attempts to write an entire buffer into this writer.
        ///
        /// Equivalent to:
        ///
        /// ```ignore
        /// async fn write_all_buf(&mut self, buf: impl Buf) -> Result<(), io::Error> {
        ///     while buf.has_remaining() {
        ///         self.write_buf(&mut buf).await?;
        ///     }
        ///     Ok(())
        /// }
        /// ```
        ///
        /// This method will continuously call [`write`] until
        /// [`buf.has_remaining()`](bytes::Buf::has_remaining) returns false. This method will not
        /// return until the entire buffer has been successfully written or an error occurs. The
        /// first error generated will be returned.
        ///
        /// The buffer is advanced after each chunk is successfully written. After failure,
        /// `src.chunk()` will return the chunk that failed to write.
        ///
        /// # Cancel safety
        ///
        /// If `write_all_buf` is used as the event in a
        /// [`tokio::select!`](crate::select) statement and some other branch
        /// completes first, then the data in the provided buffer may have been
        /// partially written. However, it is guaranteed that the provided
        /// buffer has been [advanced] by the amount of bytes that have been
        /// partially written.
        ///
        /// # Examples
        ///
        /// [`File`] implements [`AsyncWrite`] and [`Cursor`]`<&[u8]>` implements [`Buf`]:
        ///
        /// [`File`]: crate::fs::File
        /// [`Buf`]: bytes::Buf
        /// [`Cursor`]: std::io::Cursor
        /// [advanced]: bytes::Buf::advance
        ///
        /// ```no_run
        /// use tokio::io::{self, AsyncWriteExt};
        /// use tokio::fs::File;
        ///
        /// use std::io::Cursor;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     let mut file = File::create("foo.txt").await?;
        ///     let mut buffer = Cursor::new(b"data to write");
        ///
        ///     file.write_all_buf(&mut buffer).await?;
        ///     file.flush().await?;
        ///     Ok(())
        /// }
        /// ```
        ///
        /// [`write`]: AsyncWriteExt::write
        fn write_all_buf<'a, B>(&'a mut self, src: &'a mut B) -> WriteAllBuf<'a, Self, B>
        where
            Self: Sized + Unpin,
            B: Buf,
        {
            write_all_buf(self, src)
        }

        /// Attempts to write an entire buffer into this writer.
        ///
        /// Equivalent to:
        ///
        /// ```ignore
        /// async fn write_all(&mut self, buf: &[u8]) -> io::Result<()>;
        /// ```
        ///
        /// This method will continuously call [`write`] until there is no more data
        /// to be written. This method will not return until the entire buffer
        /// has been successfully written or such an error occurs. The first
        /// error generated from this method will be returned.
        ///
        /// # Cancel safety
        ///
        /// This method is not cancellation safe. If it is used as the event
        /// in a [`tokio::select!`](crate::select) statement and some other
        /// branch completes first, then the provided buffer may have been
        /// partially written, but future calls to `write_all` will start over
        /// from the beginning of the buffer.
        ///
        /// # Errors
        ///
        /// This function will return the first error that [`write`] returns.
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::io::{self, AsyncWriteExt};
        /// use tokio::fs::File;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     let mut file = File::create("foo.txt").await?;
        ///
        ///     file.write_all(b"some bytes").await?;
        ///     file.flush().await?;
        ///     Ok(())
        /// }
        /// ```
        ///
        /// [`write`]: AsyncWriteExt::write
        fn write_all<'a>(&'a mut self, src: &'a [u8]) -> WriteAll<'a, Self>
        where
            Self: Unpin,
        {
            write_all(self, src)
        }

        write_impl! {
            /// Writes an unsigned 8-bit integer to the underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u8(&mut self, n: u8) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 8 bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u8(2).await?;
            ///     writer.write_u8(5).await?;
            ///
            ///     assert_eq!(writer, b"\x02\x05");
            ///     Ok(())
            /// }
            /// ```
            fn write_u8(&mut self, n: u8) -> WriteU8;

            /// Writes a signed 8-bit integer to the underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i8(&mut self, n: i8) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 8 bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i8(-2).await?;
            ///     writer.write_i8(126).await?;
            ///
            ///     assert_eq!(writer, b"\xFE\x7E");
            ///     Ok(())
            /// }
            /// ```
            fn write_i8(&mut self, n: i8) -> WriteI8;

            /// Writes an unsigned 16-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u16(&mut self, n: u16) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 16-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u16(517).await?;
            ///     writer.write_u16(768).await?;
            ///
            ///     assert_eq!(writer, b"\x02\x05\x03\x00");
            ///     Ok(())
            /// }
            /// ```
            fn write_u16(&mut self, n: u16) -> WriteU16;

            /// Writes a signed 16-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i16(&mut self, n: i16) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 16-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i16(193).await?;
            ///     writer.write_i16(-132).await?;
            ///
            ///     assert_eq!(writer, b"\x00\xc1\xff\x7c");
            ///     Ok(())
            /// }
            /// ```
            fn write_i16(&mut self, n: i16) -> WriteI16;

            /// Writes an unsigned 32-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u32(&mut self, n: u32) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 32-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u32(267).await?;
            ///     writer.write_u32(1205419366).await?;
            ///
            ///     assert_eq!(writer, b"\x00\x00\x01\x0b\x47\xd9\x3d\x66");
            ///     Ok(())
            /// }
            /// ```
            fn write_u32(&mut self, n: u32) -> WriteU32;

            /// Writes a signed 32-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i32(&mut self, n: i32) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 32-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i32(267).await?;
            ///     writer.write_i32(1205419366).await?;
            ///
            ///     assert_eq!(writer, b"\x00\x00\x01\x0b\x47\xd9\x3d\x66");
            ///     Ok(())
            /// }
            /// ```
            fn write_i32(&mut self, n: i32) -> WriteI32;

            /// Writes an unsigned 64-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u64(&mut self, n: u64) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 64-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u64(918733457491587).await?;
            ///     writer.write_u64(143).await?;
            ///
            ///     assert_eq!(writer, b"\x00\x03\x43\x95\x4d\x60\x86\x83\x00\x00\x00\x00\x00\x00\x00\x8f");
            ///     Ok(())
            /// }
            /// ```
            fn write_u64(&mut self, n: u64) -> WriteU64;

            /// Writes an signed 64-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i64(&mut self, n: i64) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 64-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i64(i64::MIN).await?;
            ///     writer.write_i64(i64::MAX).await?;
            ///
            ///     assert_eq!(writer, b"\x80\x00\x00\x00\x00\x00\x00\x00\x7f\xff\xff\xff\xff\xff\xff\xff");
            ///     Ok(())
            /// }
            /// ```
            fn write_i64(&mut self, n: i64) -> WriteI64;

            /// Writes an unsigned 128-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u128(&mut self, n: u128) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 128-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u128(16947640962301618749969007319746179).await?;
            ///
            ///     assert_eq!(writer, vec![
            ///         0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83,
            ///         0x00, 0x03, 0x43, 0x95, 0x4d, 0x60, 0x86, 0x83
            ///     ]);
            ///     Ok(())
            /// }
            /// ```
            fn write_u128(&mut self, n: u128) -> WriteU128;

            /// Writes an signed 128-bit integer in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i128(&mut self, n: i128) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 128-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i128(i128::MIN).await?;
            ///
            ///     assert_eq!(writer, vec![
            ///         0x80, 0, 0, 0, 0, 0, 0, 0,
            ///         0, 0, 0, 0, 0, 0, 0, 0
            ///     ]);
            ///     Ok(())
            /// }
            /// ```
            fn write_i128(&mut self, n: i128) -> WriteI128;

            /// Writes an 32-bit floating point type in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_f32(&mut self, n: f32) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write 32-bit floating point type to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_f32(f32::MIN).await?;
            ///
            ///     assert_eq!(writer, vec![0xff, 0x7f, 0xff, 0xff]);
            ///     Ok(())
            /// }
            /// ```
            fn write_f32(&mut self, n: f32) -> WriteF32;

            /// Writes an 64-bit floating point type in big-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_f64(&mut self, n: f64) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write 64-bit floating point type to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_f64(f64::MIN).await?;
            ///
            ///     assert_eq!(writer, vec![
            ///         0xff, 0xef, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
            ///     ]);
            ///     Ok(())
            /// }
            /// ```
            fn write_f64(&mut self, n: f64) -> WriteF64;

            /// Writes an unsigned 16-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u16_le(&mut self, n: u16) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 16-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u16_le(517).await?;
            ///     writer.write_u16_le(768).await?;
            ///
            ///     assert_eq!(writer, b"\x05\x02\x00\x03");
            ///     Ok(())
            /// }
            /// ```
            fn write_u16_le(&mut self, n: u16) -> WriteU16Le;

            /// Writes a signed 16-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i16_le(&mut self, n: i16) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 16-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i16_le(193).await?;
            ///     writer.write_i16_le(-132).await?;
            ///
            ///     assert_eq!(writer, b"\xc1\x00\x7c\xff");
            ///     Ok(())
            /// }
            /// ```
            fn write_i16_le(&mut self, n: i16) -> WriteI16Le;

            /// Writes an unsigned 32-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u32_le(&mut self, n: u32) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 32-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u32_le(267).await?;
            ///     writer.write_u32_le(1205419366).await?;
            ///
            ///     assert_eq!(writer, b"\x0b\x01\x00\x00\x66\x3d\xd9\x47");
            ///     Ok(())
            /// }
            /// ```
            fn write_u32_le(&mut self, n: u32) -> WriteU32Le;

            /// Writes a signed 32-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i32_le(&mut self, n: i32) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 32-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i32_le(267).await?;
            ///     writer.write_i32_le(1205419366).await?;
            ///
            ///     assert_eq!(writer, b"\x0b\x01\x00\x00\x66\x3d\xd9\x47");
            ///     Ok(())
            /// }
            /// ```
            fn write_i32_le(&mut self, n: i32) -> WriteI32Le;

            /// Writes an unsigned 64-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u64_le(&mut self, n: u64) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 64-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u64_le(918733457491587).await?;
            ///     writer.write_u64_le(143).await?;
            ///
            ///     assert_eq!(writer, b"\x83\x86\x60\x4d\x95\x43\x03\x00\x8f\x00\x00\x00\x00\x00\x00\x00");
            ///     Ok(())
            /// }
            /// ```
            fn write_u64_le(&mut self, n: u64) -> WriteU64Le;

            /// Writes an signed 64-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i64_le(&mut self, n: i64) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 64-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i64_le(i64::MIN).await?;
            ///     writer.write_i64_le(i64::MAX).await?;
            ///
            ///     assert_eq!(writer, b"\x00\x00\x00\x00\x00\x00\x00\x80\xff\xff\xff\xff\xff\xff\xff\x7f");
            ///     Ok(())
            /// }
            /// ```
            fn write_i64_le(&mut self, n: i64) -> WriteI64Le;

            /// Writes an unsigned 128-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_u128_le(&mut self, n: u128) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write unsigned 128-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_u128_le(16947640962301618749969007319746179).await?;
            ///
            ///     assert_eq!(writer, vec![
            ///         0x83, 0x86, 0x60, 0x4d, 0x95, 0x43, 0x03, 0x00,
            ///         0x83, 0x86, 0x60, 0x4d, 0x95, 0x43, 0x03, 0x00,
            ///     ]);
            ///     Ok(())
            /// }
            /// ```
            fn write_u128_le(&mut self, n: u128) -> WriteU128Le;

            /// Writes an signed 128-bit integer in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_i128_le(&mut self, n: i128) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write signed 128-bit integers to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_i128_le(i128::MIN).await?;
            ///
            ///     assert_eq!(writer, vec![
            ///          0, 0, 0, 0, 0, 0, 0,
            ///         0, 0, 0, 0, 0, 0, 0, 0, 0x80
            ///     ]);
            ///     Ok(())
            /// }
            /// ```
            fn write_i128_le(&mut self, n: i128) -> WriteI128Le;

            /// Writes an 32-bit floating point type in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_f32_le(&mut self, n: f32) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write 32-bit floating point type to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_f32_le(f32::MIN).await?;
            ///
            ///     assert_eq!(writer, vec![0xff, 0xff, 0x7f, 0xff]);
            ///     Ok(())
            /// }
            /// ```
            fn write_f32_le(&mut self, n: f32) -> WriteF32Le;

            /// Writes an 64-bit floating point type in little-endian order to the
            /// underlying writer.
            ///
            /// Equivalent to:
            ///
            /// ```ignore
            /// async fn write_f64_le(&mut self, n: f64) -> io::Result<()>;
            /// ```
            ///
            /// It is recommended to use a buffered writer to avoid excessive
            /// syscalls.
            ///
            /// # Errors
            ///
            /// This method returns the same errors as [`AsyncWriteExt::write_all`].
            ///
            /// [`AsyncWriteExt::write_all`]: AsyncWriteExt::write_all
            ///
            /// # Examples
            ///
            /// Write 64-bit floating point type to a `AsyncWrite`:
            ///
            /// ```rust
            /// use tokio::io::{self, AsyncWriteExt};
            ///
            /// #[tokio::main]
            /// async fn main() -> io::Result<()> {
            ///     let mut writer = Vec::new();
            ///
            ///     writer.write_f64_le(f64::MIN).await?;
            ///
            ///     assert_eq!(writer, vec![
            ///         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0xff
            ///     ]);
            ///     Ok(())
            /// }
            /// ```
            fn write_f64_le(&mut self, n: f64) -> WriteF64Le;
        }

        /// Flushes this output stream, ensuring that all intermediately buffered
        /// contents reach their destination.
        ///
        /// Equivalent to:
        ///
        /// ```ignore
        /// async fn flush(&mut self) -> io::Result<()>;
        /// ```
        ///
        /// # Errors
        ///
        /// It is considered an error if not all bytes could be written due to
        /// I/O errors or EOF being reached.
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::io::{self, BufWriter, AsyncWriteExt};
        /// use tokio::fs::File;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     let f = File::create("foo.txt").await?;
        ///     let mut buffer = BufWriter::new(f);
        ///
        ///     buffer.write_all(b"some bytes").await?;
        ///     buffer.flush().await?;
        ///     Ok(())
        /// }
        /// ```
        fn flush(&mut self) -> Flush<'_, Self>
        where
            Self: Unpin,
        {
            flush(self)
        }

        /// Shuts down the output stream, ensuring that the value can be dropped
        /// cleanly.
        ///
        /// Equivalent to:
        ///
        /// ```ignore
        /// async fn shutdown(&mut self) -> io::Result<()>;
        /// ```
        ///
        /// Similar to [`flush`], all intermediately buffered is written to the
        /// underlying stream. Once the operation completes, the caller should
        /// no longer attempt to write to the stream. For example, the
        /// `TcpStream` implementation will issue a `shutdown(Write)` sys call.
        ///
        /// [`flush`]: fn@crate::io::AsyncWriteExt::flush
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::io::{self, BufWriter, AsyncWriteExt};
        /// use tokio::fs::File;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     let f = File::create("foo.txt").await?;
        ///     let mut buffer = BufWriter::new(f);
        ///
        ///     buffer.write_all(b"some bytes").await?;
        ///     buffer.shutdown().await?;
        ///     Ok(())
        /// }
        /// ```
        fn shutdown(&mut self) -> Shutdown<'_, Self>
        where
            Self: Unpin,
        {
            shutdown(self)
        }
    }
}

impl<W: AsyncWrite + ?Sized> AsyncWriteExt for W {}