1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#![cfg(any(feature = "std", feature = "libm"))]

use core::ops::Neg;

use crate::{Float, Num, NumCast};

// NOTE: These doctests have the same issue as those in src/float.rs.
// They're testing the inherent methods directly, and not those of `Real`.

/// A trait for real number types that do not necessarily have
/// floating-point-specific characteristics such as NaN and infinity.
///
/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
/// for a list of data types that could meaningfully implement this trait.
///
/// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
    /// Returns the smallest finite value that this type can represent.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x: f64 = Real::min_value();
    ///
    /// assert_eq!(x, f64::MIN);
    /// ```
    fn min_value() -> Self;

    /// Returns the smallest positive, normalized value that this type can represent.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x: f64 = Real::min_positive_value();
    ///
    /// assert_eq!(x, f64::MIN_POSITIVE);
    /// ```
    fn min_positive_value() -> Self;

    /// Returns epsilon, a small positive value.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x: f64 = Real::epsilon();
    ///
    /// assert_eq!(x, f64::EPSILON);
    /// ```
    ///
    /// # Panics
    ///
    /// The default implementation will panic if `f32::EPSILON` cannot
    /// be cast to `Self`.
    fn epsilon() -> Self;

    /// Returns the largest finite value that this type can represent.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x: f64 = Real::max_value();
    /// assert_eq!(x, f64::MAX);
    /// ```
    fn max_value() -> Self;

    /// Returns the largest integer less than or equal to a number.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let f = 3.99;
    /// let g = 3.0;
    ///
    /// assert_eq!(f.floor(), 3.0);
    /// assert_eq!(g.floor(), 3.0);
    /// ```
    fn floor(self) -> Self;

    /// Returns the smallest integer greater than or equal to a number.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let f = 3.01;
    /// let g = 4.0;
    ///
    /// assert_eq!(f.ceil(), 4.0);
    /// assert_eq!(g.ceil(), 4.0);
    /// ```
    fn ceil(self) -> Self;

    /// Returns the nearest integer to a number. Round half-way cases away from
    /// `0.0`.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let f = 3.3;
    /// let g = -3.3;
    ///
    /// assert_eq!(f.round(), 3.0);
    /// assert_eq!(g.round(), -3.0);
    /// ```
    fn round(self) -> Self;

    /// Return the integer part of a number.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let f = 3.3;
    /// let g = -3.7;
    ///
    /// assert_eq!(f.trunc(), 3.0);
    /// assert_eq!(g.trunc(), -3.0);
    /// ```
    fn trunc(self) -> Self;

    /// Returns the fractional part of a number.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 3.5;
    /// let y = -3.5;
    /// let abs_difference_x = (x.fract() - 0.5).abs();
    /// let abs_difference_y = (y.fract() - (-0.5)).abs();
    ///
    /// assert!(abs_difference_x < 1e-10);
    /// assert!(abs_difference_y < 1e-10);
    /// ```
    fn fract(self) -> Self;

    /// Computes the absolute value of `self`. Returns `Float::nan()` if the
    /// number is `Float::nan()`.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x = 3.5;
    /// let y = -3.5;
    ///
    /// let abs_difference_x = (x.abs() - x).abs();
    /// let abs_difference_y = (y.abs() - (-y)).abs();
    ///
    /// assert!(abs_difference_x < 1e-10);
    /// assert!(abs_difference_y < 1e-10);
    ///
    /// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
    /// ```
    fn abs(self) -> Self;

    /// Returns a number that represents the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
    /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
    /// - `Float::nan()` if the number is `Float::nan()`
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let f = 3.5;
    ///
    /// assert_eq!(f.signum(), 1.0);
    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
    ///
    /// assert!(f64::NAN.signum().is_nan());
    /// ```
    fn signum(self) -> Self;

    /// Returns `true` if `self` is positive, including `+0.0`,
    /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let neg_nan: f64 = -f64::NAN;
    ///
    /// let f = 7.0;
    /// let g = -7.0;
    ///
    /// assert!(f.is_sign_positive());
    /// assert!(!g.is_sign_positive());
    /// assert!(!neg_nan.is_sign_positive());
    /// ```
    fn is_sign_positive(self) -> bool;

    /// Returns `true` if `self` is negative, including `-0.0`,
    /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let nan: f64 = f64::NAN;
    ///
    /// let f = 7.0;
    /// let g = -7.0;
    ///
    /// assert!(!f.is_sign_negative());
    /// assert!(g.is_sign_negative());
    /// assert!(!nan.is_sign_negative());
    /// ```
    fn is_sign_negative(self) -> bool;

    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
    /// error, yielding a more accurate result than an unfused multiply-add.
    ///
    /// Using `mul_add` can be more performant than an unfused multiply-add if
    /// the target architecture has a dedicated `fma` CPU instruction.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let m = 10.0;
    /// let x = 4.0;
    /// let b = 60.0;
    ///
    /// // 100.0
    /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn mul_add(self, a: Self, b: Self) -> Self;

    /// Take the reciprocal (inverse) of a number, `1/x`.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 2.0;
    /// let abs_difference = (x.recip() - (1.0/x)).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn recip(self) -> Self;

    /// Raise a number to an integer power.
    ///
    /// Using this function is generally faster than using `powf`
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 2.0;
    /// let abs_difference = (x.powi(2) - x*x).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn powi(self, n: i32) -> Self;

    /// Raise a number to a real number power.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 2.0;
    /// let abs_difference = (x.powf(2.0) - x*x).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn powf(self, n: Self) -> Self;

    /// Take the square root of a number.
    ///
    /// Returns NaN if `self` is a negative floating-point number.
    ///
    /// # Panics
    ///
    /// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let positive = 4.0;
    /// let negative = -4.0;
    ///
    /// let abs_difference = (positive.sqrt() - 2.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// assert!(::num_traits::Float::is_nan(negative.sqrt()));
    /// ```
    fn sqrt(self) -> Self;

    /// Returns `e^(self)`, (the exponential function).
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let one = 1.0;
    /// // e^1
    /// let e = one.exp();
    ///
    /// // ln(e) - 1 == 0
    /// let abs_difference = (e.ln() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn exp(self) -> Self;

    /// Returns `2^(self)`.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let f = 2.0;
    ///
    /// // 2^2 - 4 == 0
    /// let abs_difference = (f.exp2() - 4.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn exp2(self) -> Self;

    /// Returns the natural logarithm of the number.
    ///
    /// # Panics
    ///
    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let one = 1.0;
    /// // e^1
    /// let e = one.exp();
    ///
    /// // ln(e) - 1 == 0
    /// let abs_difference = (e.ln() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn ln(self) -> Self;

    /// Returns the logarithm of the number with respect to an arbitrary base.
    ///
    /// # Panics
    ///
    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let ten = 10.0;
    /// let two = 2.0;
    ///
    /// // log10(10) - 1 == 0
    /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
    ///
    /// // log2(2) - 1 == 0
    /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
    ///
    /// assert!(abs_difference_10 < 1e-10);
    /// assert!(abs_difference_2 < 1e-10);
    /// ```
    fn log(self, base: Self) -> Self;

    /// Returns the base 2 logarithm of the number.
    ///
    /// # Panics
    ///
    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let two = 2.0;
    ///
    /// // log2(2) - 1 == 0
    /// let abs_difference = (two.log2() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn log2(self) -> Self;

    /// Returns the base 10 logarithm of the number.
    ///
    /// # Panics
    ///
    /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
    ///
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let ten = 10.0;
    ///
    /// // log10(10) - 1 == 0
    /// let abs_difference = (ten.log10() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn log10(self) -> Self;

    /// Converts radians to degrees.
    ///
    /// ```
    /// use std::f64::consts;
    ///
    /// let angle = consts::PI;
    ///
    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn to_degrees(self) -> Self;

    /// Converts degrees to radians.
    ///
    /// ```
    /// use std::f64::consts;
    ///
    /// let angle = 180.0_f64;
    ///
    /// let abs_difference = (angle.to_radians() - consts::PI).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn to_radians(self) -> Self;

    /// Returns the maximum of the two numbers.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 1.0;
    /// let y = 2.0;
    ///
    /// assert_eq!(x.max(y), y);
    /// ```
    fn max(self, other: Self) -> Self;

    /// Returns the minimum of the two numbers.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 1.0;
    /// let y = 2.0;
    ///
    /// assert_eq!(x.min(y), x);
    /// ```
    fn min(self, other: Self) -> Self;

    /// The positive difference of two numbers.
    ///
    /// * If `self <= other`: `0:0`
    /// * Else: `self - other`
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 3.0;
    /// let y = -3.0;
    ///
    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
    ///
    /// assert!(abs_difference_x < 1e-10);
    /// assert!(abs_difference_y < 1e-10);
    /// ```
    fn abs_sub(self, other: Self) -> Self;

    /// Take the cubic root of a number.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 8.0;
    ///
    /// // x^(1/3) - 2 == 0
    /// let abs_difference = (x.cbrt() - 2.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn cbrt(self) -> Self;

    /// Calculate the length of the hypotenuse of a right-angle triangle given
    /// legs of length `x` and `y`.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 2.0;
    /// let y = 3.0;
    ///
    /// // sqrt(x^2 + y^2)
    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn hypot(self, other: Self) -> Self;

    /// Computes the sine of a number (in radians).
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x = f64::consts::PI/2.0;
    ///
    /// let abs_difference = (x.sin() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn sin(self) -> Self;

    /// Computes the cosine of a number (in radians).
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x = 2.0*f64::consts::PI;
    ///
    /// let abs_difference = (x.cos() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn cos(self) -> Self;

    /// Computes the tangent of a number (in radians).
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x = f64::consts::PI/4.0;
    /// let abs_difference = (x.tan() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-14);
    /// ```
    fn tan(self) -> Self;

    /// Computes the arcsine of a number. Return value is in radians in
    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// # Panics
    ///
    /// If this type does not support a NaN representation, this function should panic
    /// if the number is outside the range [-1, 1].
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let f = f64::consts::PI / 2.0;
    ///
    /// // asin(sin(pi/2))
    /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn asin(self) -> Self;

    /// Computes the arccosine of a number. Return value is in radians in
    /// the range [0, pi] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// # Panics
    ///
    /// If this type does not support a NaN representation, this function should panic
    /// if the number is outside the range [-1, 1].
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let f = f64::consts::PI / 4.0;
    ///
    /// // acos(cos(pi/4))
    /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn acos(self) -> Self;

    /// Computes the arctangent of a number. Return value is in radians in the
    /// range [-pi/2, pi/2];
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let f = 1.0;
    ///
    /// // atan(tan(1))
    /// let abs_difference = (f.tan().atan() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn atan(self) -> Self;

    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
    ///
    /// * `x = 0`, `y = 0`: `0`
    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let pi = f64::consts::PI;
    /// // All angles from horizontal right (+x)
    /// // 45 deg counter-clockwise
    /// let x1 = 3.0;
    /// let y1 = -3.0;
    ///
    /// // 135 deg clockwise
    /// let x2 = -3.0;
    /// let y2 = 3.0;
    ///
    /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
    /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
    ///
    /// assert!(abs_difference_1 < 1e-10);
    /// assert!(abs_difference_2 < 1e-10);
    /// ```
    fn atan2(self, other: Self) -> Self;

    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
    /// `(sin(x), cos(x))`.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x = f64::consts::PI/4.0;
    /// let f = x.sin_cos();
    ///
    /// let abs_difference_0 = (f.0 - x.sin()).abs();
    /// let abs_difference_1 = (f.1 - x.cos()).abs();
    ///
    /// assert!(abs_difference_0 < 1e-10);
    /// assert!(abs_difference_0 < 1e-10);
    /// ```
    fn sin_cos(self) -> (Self, Self);

    /// Returns `e^(self) - 1` in a way that is accurate even if the
    /// number is close to zero.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 7.0;
    ///
    /// // e^(ln(7)) - 1
    /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn exp_m1(self) -> Self;

    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
    /// the operations were performed separately.
    ///
    /// # Panics
    ///
    /// If this type does not support a NaN representation, this function should panic
    /// if `self-1 <= 0`.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let x = f64::consts::E - 1.0;
    ///
    /// // ln(1 + (e - 1)) == ln(e) == 1
    /// let abs_difference = (x.ln_1p() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn ln_1p(self) -> Self;

    /// Hyperbolic sine function.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let x = 1.0;
    ///
    /// let f = x.sinh();
    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
    /// let g = (e*e - 1.0)/(2.0*e);
    /// let abs_difference = (f - g).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    fn sinh(self) -> Self;

    /// Hyperbolic cosine function.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let x = 1.0;
    /// let f = x.cosh();
    /// // Solving cosh() at 1 gives this result
    /// let g = (e*e + 1.0)/(2.0*e);
    /// let abs_difference = (f - g).abs();
    ///
    /// // Same result
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    fn cosh(self) -> Self;

    /// Hyperbolic tangent function.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let x = 1.0;
    ///
    /// let f = x.tanh();
    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
    /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
    /// let abs_difference = (f - g).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    fn tanh(self) -> Self;

    /// Inverse hyperbolic sine function.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 1.0;
    /// let f = x.sinh().asinh();
    ///
    /// let abs_difference = (f - x).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    fn asinh(self) -> Self;

    /// Inverse hyperbolic cosine function.
    ///
    /// ```
    /// use num_traits::real::Real;
    ///
    /// let x = 1.0;
    /// let f = x.cosh().acosh();
    ///
    /// let abs_difference = (f - x).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    fn acosh(self) -> Self;

    /// Inverse hyperbolic tangent function.
    ///
    /// ```
    /// use num_traits::real::Real;
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let f = e.tanh().atanh();
    ///
    /// let abs_difference = (f - e).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    fn atanh(self) -> Self;
}

impl<T: Float> Real for T {
    forward! {
        Float::min_value() -> Self;
        Float::min_positive_value() -> Self;
        Float::epsilon() -> Self;
        Float::max_value() -> Self;
    }
    forward! {
        Float::floor(self) -> Self;
        Float::ceil(self) -> Self;
        Float::round(self) -> Self;
        Float::trunc(self) -> Self;
        Float::fract(self) -> Self;
        Float::abs(self) -> Self;
        Float::signum(self) -> Self;
        Float::is_sign_positive(self) -> bool;
        Float::is_sign_negative(self) -> bool;
        Float::mul_add(self, a: Self, b: Self) -> Self;
        Float::recip(self) -> Self;
        Float::powi(self, n: i32) -> Self;
        Float::powf(self, n: Self) -> Self;
        Float::sqrt(self) -> Self;
        Float::exp(self) -> Self;
        Float::exp2(self) -> Self;
        Float::ln(self) -> Self;
        Float::log(self, base: Self) -> Self;
        Float::log2(self) -> Self;
        Float::log10(self) -> Self;
        Float::to_degrees(self) -> Self;
        Float::to_radians(self) -> Self;
        Float::max(self, other: Self) -> Self;
        Float::min(self, other: Self) -> Self;
        Float::abs_sub(self, other: Self) -> Self;
        Float::cbrt(self) -> Self;
        Float::hypot(self, other: Self) -> Self;
        Float::sin(self) -> Self;
        Float::cos(self) -> Self;
        Float::tan(self) -> Self;
        Float::asin(self) -> Self;
        Float::acos(self) -> Self;
        Float::atan(self) -> Self;
        Float::atan2(self, other: Self) -> Self;
        Float::sin_cos(self) -> (Self, Self);
        Float::exp_m1(self) -> Self;
        Float::ln_1p(self) -> Self;
        Float::sinh(self) -> Self;
        Float::cosh(self) -> Self;
        Float::tanh(self) -> Self;
        Float::asinh(self) -> Self;
        Float::acosh(self) -> Self;
        Float::atanh(self) -> Self;
    }
}