1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
#[cfg(tokio_unstable)]
use crate::runtime;
use crate::runtime::{context, scheduler, RuntimeFlavor, RuntimeMetrics};
/// Handle to the runtime.
///
/// The handle is internally reference-counted and can be freely cloned. A handle can be
/// obtained using the [`Runtime::handle`] method.
///
/// [`Runtime::handle`]: crate::runtime::Runtime::handle()
#[derive(Debug, Clone)]
// When the `rt` feature is *not* enabled, this type is still defined, but not
// included in the public API.
pub struct Handle {
pub(crate) inner: scheduler::Handle,
}
use crate::runtime::task::JoinHandle;
use crate::runtime::BOX_FUTURE_THRESHOLD;
use crate::util::error::{CONTEXT_MISSING_ERROR, THREAD_LOCAL_DESTROYED_ERROR};
use std::future::Future;
use std::marker::PhantomData;
use std::{error, fmt};
/// Runtime context guard.
///
/// Returned by [`Runtime::enter`] and [`Handle::enter`], the context guard exits
/// the runtime context on drop.
///
/// [`Runtime::enter`]: fn@crate::runtime::Runtime::enter
#[derive(Debug)]
#[must_use = "Creating and dropping a guard does nothing"]
pub struct EnterGuard<'a> {
_guard: context::SetCurrentGuard,
_handle_lifetime: PhantomData<&'a Handle>,
}
impl Handle {
/// Enters the runtime context. This allows you to construct types that must
/// have an executor available on creation such as [`Sleep`] or
/// [`TcpStream`]. It will also allow you to call methods such as
/// [`tokio::spawn`] and [`Handle::current`] without panicking.
///
/// # Panics
///
/// When calling `Handle::enter` multiple times, the returned guards
/// **must** be dropped in the reverse order that they were acquired.
/// Failure to do so will result in a panic and possible memory leaks.
///
/// # Examples
///
/// ```
/// use tokio::runtime::Runtime;
///
/// let rt = Runtime::new().unwrap();
///
/// let _guard = rt.enter();
/// tokio::spawn(async {
/// println!("Hello world!");
/// });
/// ```
///
/// Do **not** do the following, this shows a scenario that will result in a
/// panic and possible memory leak.
///
/// ```should_panic
/// use tokio::runtime::Runtime;
///
/// let rt1 = Runtime::new().unwrap();
/// let rt2 = Runtime::new().unwrap();
///
/// let enter1 = rt1.enter();
/// let enter2 = rt2.enter();
///
/// drop(enter1);
/// drop(enter2);
/// ```
///
/// [`Sleep`]: struct@crate::time::Sleep
/// [`TcpStream`]: struct@crate::net::TcpStream
/// [`tokio::spawn`]: fn@crate::spawn
pub fn enter(&self) -> EnterGuard<'_> {
EnterGuard {
_guard: match context::try_set_current(&self.inner) {
Some(guard) => guard,
None => panic!("{}", crate::util::error::THREAD_LOCAL_DESTROYED_ERROR),
},
_handle_lifetime: PhantomData,
}
}
/// Returns a `Handle` view over the currently running `Runtime`.
///
/// # Panics
///
/// This will panic if called outside the context of a Tokio runtime. That means that you must
/// call this on one of the threads **being run by the runtime**, or from a thread with an active
/// `EnterGuard`. Calling this from within a thread created by `std::thread::spawn` (for example)
/// will cause a panic unless that thread has an active `EnterGuard`.
///
/// # Examples
///
/// This can be used to obtain the handle of the surrounding runtime from an async
/// block or function running on that runtime.
///
/// ```
/// # use std::thread;
/// # use tokio::runtime::Runtime;
/// # fn dox() {
/// # let rt = Runtime::new().unwrap();
/// # rt.spawn(async {
/// use tokio::runtime::Handle;
///
/// // Inside an async block or function.
/// let handle = Handle::current();
/// handle.spawn(async {
/// println!("now running in the existing Runtime");
/// });
///
/// # let handle =
/// thread::spawn(move || {
/// // Notice that the handle is created outside of this thread and then moved in
/// handle.spawn(async { /* ... */ });
/// // This next line would cause a panic because we haven't entered the runtime
/// // and created an EnterGuard
/// // let handle2 = Handle::current(); // panic
/// // So we create a guard here with Handle::enter();
/// let _guard = handle.enter();
/// // Now we can call Handle::current();
/// let handle2 = Handle::current();
/// });
/// # handle.join().unwrap();
/// # });
/// # }
/// ```
#[track_caller]
pub fn current() -> Self {
Handle {
inner: scheduler::Handle::current(),
}
}
/// Returns a Handle view over the currently running Runtime
///
/// Returns an error if no Runtime has been started
///
/// Contrary to `current`, this never panics
pub fn try_current() -> Result<Self, TryCurrentError> {
context::with_current(|inner| Handle {
inner: inner.clone(),
})
}
/// Spawns a future onto the Tokio runtime.
///
/// This spawns the given future onto the runtime's executor, usually a
/// thread pool. The thread pool is then responsible for polling the future
/// until it completes.
///
/// The provided future will start running in the background immediately
/// when `spawn` is called, even if you don't await the returned
/// `JoinHandle`.
///
/// See [module level][mod] documentation for more details.
///
/// [mod]: index.html
///
/// # Examples
///
/// ```
/// use tokio::runtime::Runtime;
///
/// # fn dox() {
/// // Create the runtime
/// let rt = Runtime::new().unwrap();
/// // Get a handle from this runtime
/// let handle = rt.handle();
///
/// // Spawn a future onto the runtime using the handle
/// handle.spawn(async {
/// println!("now running on a worker thread");
/// });
/// # }
/// ```
#[track_caller]
pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
where
F: Future + Send + 'static,
F::Output: Send + 'static,
{
if cfg!(debug_assertions) && std::mem::size_of::<F>() > BOX_FUTURE_THRESHOLD {
self.spawn_named(Box::pin(future), None)
} else {
self.spawn_named(future, None)
}
}
/// Runs the provided function on an executor dedicated to blocking
/// operations.
///
/// # Examples
///
/// ```
/// use tokio::runtime::Runtime;
///
/// # fn dox() {
/// // Create the runtime
/// let rt = Runtime::new().unwrap();
/// // Get a handle from this runtime
/// let handle = rt.handle();
///
/// // Spawn a blocking function onto the runtime using the handle
/// handle.spawn_blocking(|| {
/// println!("now running on a worker thread");
/// });
/// # }
#[track_caller]
pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R>
where
F: FnOnce() -> R + Send + 'static,
R: Send + 'static,
{
self.inner.blocking_spawner().spawn_blocking(self, func)
}
/// Runs a future to completion on this `Handle`'s associated `Runtime`.
///
/// This runs the given future on the current thread, blocking until it is
/// complete, and yielding its resolved result. Any tasks or timers which
/// the future spawns internally will be executed on the runtime.
///
/// When this is used on a `current_thread` runtime, only the
/// [`Runtime::block_on`] method can drive the IO and timer drivers, but the
/// `Handle::block_on` method cannot drive them. This means that, when using
/// this method on a `current_thread` runtime, anything that relies on IO or
/// timers will not work unless there is another thread currently calling
/// [`Runtime::block_on`] on the same runtime.
///
/// # If the runtime has been shut down
///
/// If the `Handle`'s associated `Runtime` has been shut down (through
/// [`Runtime::shutdown_background`], [`Runtime::shutdown_timeout`], or by
/// dropping it) and `Handle::block_on` is used it might return an error or
/// panic. Specifically IO resources will return an error and timers will
/// panic. Runtime independent futures will run as normal.
///
/// # Panics
///
/// This function panics if the provided future panics, if called within an
/// asynchronous execution context, or if a timer future is executed on a
/// runtime that has been shut down.
///
/// # Examples
///
/// ```
/// use tokio::runtime::Runtime;
///
/// // Create the runtime
/// let rt = Runtime::new().unwrap();
///
/// // Get a handle from this runtime
/// let handle = rt.handle();
///
/// // Execute the future, blocking the current thread until completion
/// handle.block_on(async {
/// println!("hello");
/// });
/// ```
///
/// Or using `Handle::current`:
///
/// ```
/// use tokio::runtime::Handle;
///
/// #[tokio::main]
/// async fn main () {
/// let handle = Handle::current();
/// std::thread::spawn(move || {
/// // Using Handle::block_on to run async code in the new thread.
/// handle.block_on(async {
/// println!("hello");
/// });
/// });
/// }
/// ```
///
/// [`JoinError`]: struct@crate::task::JoinError
/// [`JoinHandle`]: struct@crate::task::JoinHandle
/// [`Runtime::block_on`]: fn@crate::runtime::Runtime::block_on
/// [`Runtime::shutdown_background`]: fn@crate::runtime::Runtime::shutdown_background
/// [`Runtime::shutdown_timeout`]: fn@crate::runtime::Runtime::shutdown_timeout
/// [`spawn_blocking`]: crate::task::spawn_blocking
/// [`tokio::fs`]: crate::fs
/// [`tokio::net`]: crate::net
/// [`tokio::time`]: crate::time
#[track_caller]
pub fn block_on<F: Future>(&self, future: F) -> F::Output {
if cfg!(debug_assertions) && std::mem::size_of::<F>() > BOX_FUTURE_THRESHOLD {
self.block_on_inner(Box::pin(future))
} else {
self.block_on_inner(future)
}
}
#[track_caller]
fn block_on_inner<F: Future>(&self, future: F) -> F::Output {
#[cfg(all(
tokio_unstable,
tokio_taskdump,
feature = "rt",
target_os = "linux",
any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64")
))]
let future = super::task::trace::Trace::root(future);
#[cfg(all(tokio_unstable, feature = "tracing"))]
let future =
crate::util::trace::task(future, "block_on", None, super::task::Id::next().as_u64());
// Enter the runtime context. This sets the current driver handles and
// prevents blocking an existing runtime.
context::enter_runtime(&self.inner, true, |blocking| {
blocking.block_on(future).expect("failed to park thread")
})
}
#[track_caller]
pub(crate) fn spawn_named<F>(&self, future: F, _name: Option<&str>) -> JoinHandle<F::Output>
where
F: Future + Send + 'static,
F::Output: Send + 'static,
{
let id = crate::runtime::task::Id::next();
#[cfg(all(
tokio_unstable,
tokio_taskdump,
feature = "rt",
target_os = "linux",
any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64")
))]
let future = super::task::trace::Trace::root(future);
#[cfg(all(tokio_unstable, feature = "tracing"))]
let future = crate::util::trace::task(future, "task", _name, id.as_u64());
self.inner.spawn(future, id)
}
/// Returns the flavor of the current `Runtime`.
///
/// # Examples
///
/// ```
/// use tokio::runtime::{Handle, RuntimeFlavor};
///
/// #[tokio::main(flavor = "current_thread")]
/// async fn main() {
/// assert_eq!(RuntimeFlavor::CurrentThread, Handle::current().runtime_flavor());
/// }
/// ```
///
/// ```
/// use tokio::runtime::{Handle, RuntimeFlavor};
///
/// #[tokio::main(flavor = "multi_thread", worker_threads = 4)]
/// async fn main() {
/// assert_eq!(RuntimeFlavor::MultiThread, Handle::current().runtime_flavor());
/// }
/// ```
pub fn runtime_flavor(&self) -> RuntimeFlavor {
match self.inner {
scheduler::Handle::CurrentThread(_) => RuntimeFlavor::CurrentThread,
#[cfg(feature = "rt-multi-thread")]
scheduler::Handle::MultiThread(_) => RuntimeFlavor::MultiThread,
#[cfg(all(tokio_unstable, feature = "rt-multi-thread"))]
scheduler::Handle::MultiThreadAlt(_) => RuntimeFlavor::MultiThreadAlt,
}
}
cfg_unstable! {
/// Returns the [`Id`] of the current `Runtime`.
///
/// # Examples
///
/// ```
/// use tokio::runtime::Handle;
///
/// #[tokio::main(flavor = "current_thread")]
/// async fn main() {
/// println!("Current runtime id: {}", Handle::current().id());
/// }
/// ```
///
/// **Note**: This is an [unstable API][unstable]. The public API of this type
/// may break in 1.x releases. See [the documentation on unstable
/// features][unstable] for details.
///
/// [unstable]: crate#unstable-features
/// [`Id`]: struct@crate::runtime::Id
pub fn id(&self) -> runtime::Id {
let owned_id = match &self.inner {
scheduler::Handle::CurrentThread(handle) => handle.owned_id(),
#[cfg(feature = "rt-multi-thread")]
scheduler::Handle::MultiThread(handle) => handle.owned_id(),
#[cfg(all(tokio_unstable, feature = "rt-multi-thread"))]
scheduler::Handle::MultiThreadAlt(handle) => handle.owned_id(),
};
owned_id.into()
}
}
/// Returns a view that lets you get information about how the runtime
/// is performing.
pub fn metrics(&self) -> RuntimeMetrics {
RuntimeMetrics::new(self.clone())
}
}
cfg_taskdump! {
impl Handle {
/// Captures a snapshot of the runtime's state.
///
/// This functionality is experimental, and comes with a number of
/// requirements and limitations.
///
/// # Examples
///
/// This can be used to get call traces of each task in the runtime.
/// Calls to `Handle::dump` should usually be enclosed in a
/// [timeout][crate::time::timeout], so that dumping does not escalate a
/// single blocked runtime thread into an entirely blocked runtime.
///
/// ```
/// # use tokio::runtime::Runtime;
/// # fn dox() {
/// # let rt = Runtime::new().unwrap();
/// # rt.spawn(async {
/// use tokio::runtime::Handle;
/// use tokio::time::{timeout, Duration};
///
/// // Inside an async block or function.
/// let handle = Handle::current();
/// if let Ok(dump) = timeout(Duration::from_secs(2), handle.dump()).await {
/// for (i, task) in dump.tasks().iter().enumerate() {
/// let trace = task.trace();
/// println!("TASK {i}:");
/// println!("{trace}\n");
/// }
/// }
/// # });
/// # }
/// ```
///
/// This produces highly detailed traces of tasks; e.g.:
///
/// ```plain
/// TASK 0:
/// ╼ dump::main::{{closure}}::a::{{closure}} at /tokio/examples/dump.rs:18:20
/// └╼ dump::main::{{closure}}::b::{{closure}} at /tokio/examples/dump.rs:23:20
/// └╼ dump::main::{{closure}}::c::{{closure}} at /tokio/examples/dump.rs:28:24
/// └╼ tokio::sync::barrier::Barrier::wait::{{closure}} at /tokio/tokio/src/sync/barrier.rs:129:10
/// └╼ <tokio::util::trace::InstrumentedAsyncOp<F> as core::future::future::Future>::poll at /tokio/tokio/src/util/trace.rs:77:46
/// └╼ tokio::sync::barrier::Barrier::wait_internal::{{closure}} at /tokio/tokio/src/sync/barrier.rs:183:36
/// └╼ tokio::sync::watch::Receiver<T>::changed::{{closure}} at /tokio/tokio/src/sync/watch.rs:604:55
/// └╼ tokio::sync::watch::changed_impl::{{closure}} at /tokio/tokio/src/sync/watch.rs:755:18
/// └╼ <tokio::sync::notify::Notified as core::future::future::Future>::poll at /tokio/tokio/src/sync/notify.rs:1103:9
/// └╼ tokio::sync::notify::Notified::poll_notified at /tokio/tokio/src/sync/notify.rs:996:32
/// ```
///
/// # Requirements
///
/// ## Debug Info Must Be Available
///
/// To produce task traces, the application must **not** be compiled
/// with `split debuginfo`. On Linux, including `debuginfo` within the
/// application binary is the (correct) default. You can further ensure
/// this behavior with the following directive in your `Cargo.toml`:
///
/// ```toml
/// [profile.*]
/// split-debuginfo = "off"
/// ```
///
/// ## Unstable Features
///
/// This functionality is **unstable**, and requires both the
/// `tokio_unstable` and `tokio_taskdump` `cfg` flags to be set.
///
/// You can do this by setting the `RUSTFLAGS` environment variable
/// before invoking `cargo`; e.g.:
/// ```bash
/// RUSTFLAGS="--cfg tokio_unstable --cfg tokio_taskdump" cargo run --example dump
/// ```
///
/// Or by [configuring][cargo-config] `rustflags` in
/// `.cargo/config.toml`:
/// ```text
/// [build]
/// rustflags = ["--cfg", "tokio_unstable", "--cfg", "tokio_taskdump"]
/// ```
///
/// [cargo-config]:
/// https://doc.rust-lang.org/cargo/reference/config.html
///
/// ## Platform Requirements
///
/// Task dumps are supported on Linux atop `aarch64`, `x86` and `x86_64`.
///
/// ## Current Thread Runtime Requirements
///
/// On the `current_thread` runtime, task dumps may only be requested
/// from *within* the context of the runtime being dumped. Do not, for
/// example, await `Handle::dump()` on a different runtime.
///
/// # Limitations
///
/// ## Performance
///
/// Although enabling the `tokio_taskdump` feature imposes virtually no
/// additional runtime overhead, actually calling `Handle::dump` is
/// expensive. The runtime must synchronize and pause its workers, then
/// re-poll every task in a special tracing mode. Avoid requesting dumps
/// often.
///
/// ## Local Executors
///
/// Tasks managed by local executors (e.g., `FuturesUnordered` and
/// [`LocalSet`][crate::task::LocalSet]) may not appear in task dumps.
///
/// ## Non-Termination When Workers Are Blocked
///
/// The future produced by `Handle::dump` may never produce `Ready` if
/// another runtime worker is blocked for more than 250ms. This may
/// occur if a dump is requested during shutdown, or if another runtime
/// worker is infinite looping or synchronously deadlocked. For these
/// reasons, task dumping should usually be paired with an explicit
/// [timeout][crate::time::timeout].
pub async fn dump(&self) -> crate::runtime::Dump {
match &self.inner {
scheduler::Handle::CurrentThread(handle) => handle.dump(),
#[cfg(all(feature = "rt-multi-thread", not(target_os = "wasi")))]
scheduler::Handle::MultiThread(handle) => {
// perform the trace in a separate thread so that the
// trace itself does not appear in the taskdump.
let handle = handle.clone();
spawn_thread(async {
let handle = handle;
handle.dump().await
}).await
},
#[cfg(all(tokio_unstable, feature = "rt-multi-thread", not(target_os = "wasi")))]
scheduler::Handle::MultiThreadAlt(_) => panic!("task dump not implemented for this runtime flavor"),
}
}
/// Produces `true` if the current task is being traced for a dump;
/// otherwise false. This function is only public for integration
/// testing purposes. Do not rely on it.
#[doc(hidden)]
pub fn is_tracing() -> bool {
super::task::trace::Context::is_tracing()
}
}
cfg_rt_multi_thread! {
/// Spawn a new thread and asynchronously await on its result.
async fn spawn_thread<F>(f: F) -> <F as Future>::Output
where
F: Future + Send + 'static,
<F as Future>::Output: Send + 'static
{
let (tx, rx) = crate::sync::oneshot::channel();
crate::loom::thread::spawn(|| {
let rt = crate::runtime::Builder::new_current_thread().build().unwrap();
rt.block_on(async {
let _ = tx.send(f.await);
});
});
rx.await.unwrap()
}
}
}
/// Error returned by `try_current` when no Runtime has been started
#[derive(Debug)]
pub struct TryCurrentError {
kind: TryCurrentErrorKind,
}
impl TryCurrentError {
pub(crate) fn new_no_context() -> Self {
Self {
kind: TryCurrentErrorKind::NoContext,
}
}
pub(crate) fn new_thread_local_destroyed() -> Self {
Self {
kind: TryCurrentErrorKind::ThreadLocalDestroyed,
}
}
/// Returns true if the call failed because there is currently no runtime in
/// the Tokio context.
pub fn is_missing_context(&self) -> bool {
matches!(self.kind, TryCurrentErrorKind::NoContext)
}
/// Returns true if the call failed because the Tokio context thread-local
/// had been destroyed. This can usually only happen if in the destructor of
/// other thread-locals.
pub fn is_thread_local_destroyed(&self) -> bool {
matches!(self.kind, TryCurrentErrorKind::ThreadLocalDestroyed)
}
}
enum TryCurrentErrorKind {
NoContext,
ThreadLocalDestroyed,
}
impl fmt::Debug for TryCurrentErrorKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
TryCurrentErrorKind::NoContext => f.write_str("NoContext"),
TryCurrentErrorKind::ThreadLocalDestroyed => f.write_str("ThreadLocalDestroyed"),
}
}
}
impl fmt::Display for TryCurrentError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use TryCurrentErrorKind as E;
match self.kind {
E::NoContext => f.write_str(CONTEXT_MISSING_ERROR),
E::ThreadLocalDestroyed => f.write_str(THREAD_LOCAL_DESTROYED_ERROR),
}
}
}
impl error::Error for TryCurrentError {}