1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
//! The SHA family of hashes.
//!
//! SHA, or Secure Hash Algorithms, are a family of cryptographic hashing algorithms published by
//! the National Institute of Standards and Technology (NIST).  Hash algorithms such as those in
//! the SHA family are used to map data of an arbitrary size to a fixed-size string of bytes.
//! As cryptographic hashing algorithms, these mappings have the property of being irreversible.
//! This property makes hash algorithms like these excellent for uses such as verifying the
//! contents of a file- if you know the hash you expect beforehand, then you can verify that the
//! data you have is correct if it hashes to the same value.
//!
//! # Examples
//!
//! When dealing with data that becomes available in chunks, such as while buffering data from IO,
//! you can create a hasher that you can repeatedly update to add bytes to.
//!
//! ```rust
//! use openssl::sha;
//!
//! let mut hasher = sha::Sha256::new();
//!
//! hasher.update(b"Hello, ");
//! hasher.update(b"world");
//!
//! let hash = hasher.finish();
//! println!("Hashed \"Hello, world\" to {}", hex::encode(hash));
//! ```
//!
//! On the other hand, if you already have access to all of the data you would like to hash, you
//! may prefer to use the slightly simpler method of simply calling the hash function corresponding
//! to the algorithm you want to use.
//!
//! ```rust
//! use openssl::sha::sha256;
//!
//! let hash = sha256(b"your data or message");
//! println!("Hash = {}", hex::encode(hash));
//! ```
use cfg_if::cfg_if;
use libc::c_void;
use openssl_macros::corresponds;
use std::mem::MaybeUninit;

/// Computes the SHA1 hash of some data.
///
/// # Warning
///
/// SHA1 is known to be insecure - it should not be used unless required for
/// compatibility with existing systems.
#[corresponds(SHA1)]
#[inline]
pub fn sha1(data: &[u8]) -> [u8; 20] {
    unsafe {
        let mut hash = MaybeUninit::<[u8; 20]>::uninit();
        ffi::SHA1(data.as_ptr(), data.len(), hash.as_mut_ptr() as *mut _);
        hash.assume_init()
    }
}

/// Computes the SHA224 hash of some data.
#[corresponds(SHA224)]
#[inline]
pub fn sha224(data: &[u8]) -> [u8; 28] {
    unsafe {
        let mut hash = MaybeUninit::<[u8; 28]>::uninit();
        ffi::SHA224(data.as_ptr(), data.len(), hash.as_mut_ptr() as *mut _);
        hash.assume_init()
    }
}

/// Computes the SHA256 hash of some data.
#[corresponds(SHA256)]
#[inline]
pub fn sha256(data: &[u8]) -> [u8; 32] {
    unsafe {
        let mut hash = MaybeUninit::<[u8; 32]>::uninit();
        ffi::SHA256(data.as_ptr(), data.len(), hash.as_mut_ptr() as *mut _);
        hash.assume_init()
    }
}

/// Computes the SHA384 hash of some data.
#[corresponds(SHA384)]
#[inline]
pub fn sha384(data: &[u8]) -> [u8; 48] {
    unsafe {
        let mut hash = MaybeUninit::<[u8; 48]>::uninit();
        ffi::SHA384(data.as_ptr(), data.len(), hash.as_mut_ptr() as *mut _);
        hash.assume_init()
    }
}

/// Computes the SHA512 hash of some data.
#[corresponds(SHA512)]
#[inline]
pub fn sha512(data: &[u8]) -> [u8; 64] {
    unsafe {
        let mut hash = MaybeUninit::<[u8; 64]>::uninit();
        ffi::SHA512(data.as_ptr(), data.len(), hash.as_mut_ptr() as *mut _);
        hash.assume_init()
    }
}

cfg_if! {
    if #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))] {
        /// An object which calculates a SHA1 hash of some data.
        ///
        /// # Warning
        ///
        /// SHA1 is known to be insecure - it should not be used unless required for
        /// compatibility with existing systems.
        #[derive(Clone)]
        pub struct Sha1(ffi::SHA_CTX);

        impl Default for Sha1 {
            #[inline]
            fn default() -> Sha1 {
                Sha1::new()
            }
        }

        impl Sha1 {
            /// Creates a new hasher.
            #[corresponds(SHA1_Init)]
            #[inline]
            pub fn new() -> Sha1 {
                unsafe {
                    let mut ctx = MaybeUninit::uninit();
                    ffi::SHA1_Init( ctx.as_mut_ptr());
                    Sha1(ctx.assume_init())
                }
            }

            /// Feeds some data into the hasher.
            ///
            /// This can be called multiple times.
            #[corresponds(SHA1_Update)]
            #[inline]
            pub fn update(&mut self, buf: &[u8]) {
                unsafe {
                    ffi::SHA1_Update(&mut self.0, buf.as_ptr() as *const c_void, buf.len());
                }
            }

            /// Returns the hash of the data.
            #[corresponds(SHA1_Final)]
            #[inline]
            pub fn finish(mut self) -> [u8; 20] {
                unsafe {
                    let mut hash = MaybeUninit::<[u8; 20]>::uninit();
                    ffi::SHA1_Final(hash.as_mut_ptr() as *mut _, &mut self.0);
                    hash.assume_init()
                }
            }
        }

        /// An object which calculates a SHA224 hash of some data.
        #[derive(Clone)]
        pub struct Sha224(ffi::SHA256_CTX);

        impl Default for Sha224 {
            #[inline]
            fn default() -> Sha224 {
                Sha224::new()
            }
        }

        impl Sha224 {
            /// Creates a new hasher.
            #[corresponds(SHA224_Init)]
            #[inline]
            pub fn new() -> Sha224 {
                unsafe {
                    let mut ctx = MaybeUninit::uninit();
                    ffi::SHA224_Init(ctx.as_mut_ptr());
                    Sha224(ctx.assume_init())
                }
            }

            /// Feeds some data into the hasher.
            ///
            /// This can be called multiple times.
            #[corresponds(SHA224_Update)]
            #[inline]
            pub fn update(&mut self, buf: &[u8]) {
                unsafe {
                    ffi::SHA224_Update(&mut self.0, buf.as_ptr() as *const c_void, buf.len());
                }
            }

            /// Returns the hash of the data.
            #[corresponds(SHA224_Final)]
            #[inline]
            pub fn finish(mut self) -> [u8; 28] {
                unsafe {
                    let mut hash = MaybeUninit::<[u8; 28]>::uninit();
                    ffi::SHA224_Final(hash.as_mut_ptr() as *mut _, &mut self.0);
                    hash.assume_init()
                }
            }
        }

        /// An object which calculates a SHA256 hash of some data.
        #[derive(Clone)]
        pub struct Sha256(ffi::SHA256_CTX);

        impl Default for Sha256 {
            #[inline]
            fn default() -> Sha256 {
                Sha256::new()
            }
        }

        impl Sha256 {
            /// Creates a new hasher.
            #[corresponds(SHA256_Init)]
            #[inline]
            pub fn new() -> Sha256 {
                unsafe {
                    let mut ctx = MaybeUninit::uninit();
                    ffi::SHA256_Init(ctx.as_mut_ptr());
                    Sha256(ctx.assume_init())
                }
            }

            /// Feeds some data into the hasher.
            ///
            /// This can be called multiple times.
            #[corresponds(SHA256_Update)]
            #[inline]
            pub fn update(&mut self, buf: &[u8]) {
                unsafe {
                    ffi::SHA256_Update(&mut self.0, buf.as_ptr() as *const c_void, buf.len());
                }
            }

            /// Returns the hash of the data.
            #[corresponds(SHA256_Final)]
            #[inline]
            pub fn finish(mut self) -> [u8; 32] {
                unsafe {
                    let mut hash = MaybeUninit::<[u8; 32]>::uninit();
                    ffi::SHA256_Final(hash.as_mut_ptr() as *mut _, &mut self.0);
                    hash.assume_init()
                }
            }
        }

        /// An object which calculates a SHA384 hash of some data.
        #[derive(Clone)]
        pub struct Sha384(ffi::SHA512_CTX);

        impl Default for Sha384 {
            #[inline]
            fn default() -> Sha384 {
                Sha384::new()
            }
        }

        impl Sha384 {
            /// Creates a new hasher.
            #[corresponds(SHA384_Init)]
            #[inline]
            pub fn new() -> Sha384 {
                unsafe {
                    let mut ctx = MaybeUninit::uninit();
                    ffi::SHA384_Init(ctx.as_mut_ptr());
                    Sha384(ctx.assume_init())
                }
            }

            /// Feeds some data into the hasher.
            ///
            /// This can be called multiple times.
            #[corresponds(SHA384_Update)]
            #[inline]
            pub fn update(&mut self, buf: &[u8]) {
                unsafe {
                    ffi::SHA384_Update(&mut self.0, buf.as_ptr() as *const c_void, buf.len());
                }
            }

            /// Returns the hash of the data.
            #[corresponds(SHA384_Final)]
            #[inline]
            pub fn finish(mut self) -> [u8; 48] {
                unsafe {
                    let mut hash = MaybeUninit::<[u8; 48]>::uninit();
                    ffi::SHA384_Final(hash.as_mut_ptr() as *mut _, &mut self.0);
                    hash.assume_init()
                }
            }
        }

        /// An object which calculates a SHA512 hash of some data.
        #[derive(Clone)]
        pub struct Sha512(ffi::SHA512_CTX);

        impl Default for Sha512 {
            #[inline]
            fn default() -> Sha512 {
                Sha512::new()
            }
        }

        impl Sha512 {
            /// Creates a new hasher.
            #[corresponds(SHA512_Init)]
            #[inline]
            pub fn new() -> Sha512 {
                unsafe {
                    let mut ctx = MaybeUninit::uninit();
                    ffi::SHA512_Init(ctx.as_mut_ptr());
                    Sha512(ctx.assume_init())
                }
            }

            /// Feeds some data into the hasher.
            ///
            /// This can be called multiple times.
            #[corresponds(SHA512_Update)]
            #[inline]
            pub fn update(&mut self, buf: &[u8]) {
                unsafe {
                    ffi::SHA512_Update(&mut self.0, buf.as_ptr() as *const c_void, buf.len());
                }
            }

            /// Returns the hash of the data.
            #[corresponds(SHA512_Final)]
            #[inline]
            pub fn finish(mut self) -> [u8; 64] {
                unsafe {
                    let mut hash= MaybeUninit::<[u8; 64]>::uninit();
                ffi::SHA512_Final(hash.as_mut_ptr() as *mut _, &mut self.0);
                hash.assume_init()
            }
        }
    }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn standalone_1() {
        let data = b"abc";
        let expected = "a9993e364706816aba3e25717850c26c9cd0d89d";

        assert_eq!(hex::encode(sha1(data)), expected);
    }

    #[test]
    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
    fn struct_1() {
        let expected = "a9993e364706816aba3e25717850c26c9cd0d89d";

        let mut hasher = Sha1::new();
        hasher.update(b"a");
        hasher.update(b"bc");
        assert_eq!(hex::encode(hasher.finish()), expected);
    }

    #[test]
    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
    fn cloning_allows_incremental_hashing() {
        let expected = "a9993e364706816aba3e25717850c26c9cd0d89d";

        let mut hasher = Sha1::new();
        hasher.update(b"a");

        let mut incr_hasher = hasher.clone();
        incr_hasher.update(b"bc");

        assert_eq!(hex::encode(incr_hasher.finish()), expected);
        assert_ne!(hex::encode(hasher.finish()), expected);
    }

    #[test]
    fn standalone_224() {
        let data = b"abc";
        let expected = "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7";

        assert_eq!(hex::encode(sha224(data)), expected);
    }

    #[test]
    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
    fn struct_224() {
        let expected = "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7";

        let mut hasher = Sha224::new();
        hasher.update(b"a");
        hasher.update(b"bc");
        assert_eq!(hex::encode(hasher.finish()), expected);
    }

    #[test]
    fn standalone_256() {
        let data = b"abc";
        let expected = "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";

        assert_eq!(hex::encode(sha256(data)), expected);
    }

    #[test]
    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
    fn struct_256() {
        let expected = "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";

        let mut hasher = Sha256::new();
        hasher.update(b"a");
        hasher.update(b"bc");
        assert_eq!(hex::encode(hasher.finish()), expected);
    }

    #[test]
    fn standalone_384() {
        let data = b"abc";
        let expected =
            "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e\
             7cc2358baeca134c825a7";

        assert_eq!(hex::encode(&sha384(data)[..]), expected);
    }

    #[test]
    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
    fn struct_384() {
        let expected =
            "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e\
             7cc2358baeca134c825a7";

        let mut hasher = Sha384::new();
        hasher.update(b"a");
        hasher.update(b"bc");
        assert_eq!(hex::encode(&hasher.finish()[..]), expected);
    }

    #[test]
    fn standalone_512() {
        let data = b"abc";
        let expected =
            "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274\
             fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f";

        assert_eq!(hex::encode(&sha512(data)[..]), expected);
    }

    #[test]
    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
    fn struct_512() {
        let expected =
            "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274\
             fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f";

        let mut hasher = Sha512::new();
        hasher.update(b"a");
        hasher.update(b"bc");
        assert_eq!(hex::encode(&hasher.finish()[..]), expected);
    }
}