1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
//! Allows a future to execute for a maximum amount of time.
//!
//! See [`Timeout`] documentation for more details.
//!
//! [`Timeout`]: struct@Timeout
use crate::{
runtime::coop,
time::{error::Elapsed, sleep_until, Duration, Instant, Sleep},
util::trace,
};
use pin_project_lite::pin_project;
use std::future::{Future, IntoFuture};
use std::pin::Pin;
use std::task::{self, Poll};
/// Requires a `Future` to complete before the specified duration has elapsed.
///
/// If the future completes before the duration has elapsed, then the completed
/// value is returned. Otherwise, an error is returned and the future is
/// canceled.
///
/// Note that the timeout is checked before polling the future, so if the future
/// does not yield during execution then it is possible for the future to complete
/// and exceed the timeout _without_ returning an error.
///
/// This function returns a future whose return type is [`Result`]`<T,`[`Elapsed`]`>`, where `T` is the
/// return type of the provided future.
///
/// If the provided future completes immediately, then the future returned from
/// this function is guaranteed to complete immediately with an [`Ok`] variant
/// no matter the provided duration.
///
/// [`Ok`]: std::result::Result::Ok
/// [`Result`]: std::result::Result
/// [`Elapsed`]: crate::time::error::Elapsed
///
/// # Cancellation
///
/// Cancelling a timeout is done by dropping the future. No additional cleanup
/// or other work is required.
///
/// The original future may be obtained by calling [`Timeout::into_inner`]. This
/// consumes the `Timeout`.
///
/// # Examples
///
/// Create a new `Timeout` set to expire in 10 milliseconds.
///
/// ```rust
/// use tokio::time::timeout;
/// use tokio::sync::oneshot;
///
/// use std::time::Duration;
///
/// # async fn dox() {
/// let (tx, rx) = oneshot::channel();
/// # tx.send(()).unwrap();
///
/// // Wrap the future with a `Timeout` set to expire in 10 milliseconds.
/// if let Err(_) = timeout(Duration::from_millis(10), rx).await {
/// println!("did not receive value within 10 ms");
/// }
/// # }
/// ```
///
/// # Panics
///
/// This function panics if there is no current timer set.
///
/// It can be triggered when [`Builder::enable_time`] or
/// [`Builder::enable_all`] are not included in the builder.
///
/// It can also panic whenever a timer is created outside of a
/// Tokio runtime. That is why `rt.block_on(sleep(...))` will panic,
/// since the function is executed outside of the runtime.
/// Whereas `rt.block_on(async {sleep(...).await})` doesn't panic.
/// And this is because wrapping the function on an async makes it lazy,
/// and so gets executed inside the runtime successfully without
/// panicking.
///
/// [`Builder::enable_time`]: crate::runtime::Builder::enable_time
/// [`Builder::enable_all`]: crate::runtime::Builder::enable_all
#[track_caller]
pub fn timeout<F>(duration: Duration, future: F) -> Timeout<F::IntoFuture>
where
F: IntoFuture,
{
let location = trace::caller_location();
let deadline = Instant::now().checked_add(duration);
let delay = match deadline {
Some(deadline) => Sleep::new_timeout(deadline, location),
None => Sleep::far_future(location),
};
Timeout::new_with_delay(future.into_future(), delay)
}
/// Requires a `Future` to complete before the specified instant in time.
///
/// If the future completes before the instant is reached, then the completed
/// value is returned. Otherwise, an error is returned.
///
/// This function returns a future whose return type is [`Result`]`<T,`[`Elapsed`]`>`, where `T` is the
/// return type of the provided future.
///
/// If the provided future completes immediately, then the future returned from
/// this function is guaranteed to complete immediately with an [`Ok`] variant
/// no matter the provided deadline.
///
/// [`Ok`]: std::result::Result::Ok
/// [`Result`]: std::result::Result
/// [`Elapsed`]: crate::time::error::Elapsed
///
/// # Cancellation
///
/// Cancelling a timeout is done by dropping the future. No additional cleanup
/// or other work is required.
///
/// The original future may be obtained by calling [`Timeout::into_inner`]. This
/// consumes the `Timeout`.
///
/// # Examples
///
/// Create a new `Timeout` set to expire in 10 milliseconds.
///
/// ```rust
/// use tokio::time::{Instant, timeout_at};
/// use tokio::sync::oneshot;
///
/// use std::time::Duration;
///
/// # async fn dox() {
/// let (tx, rx) = oneshot::channel();
/// # tx.send(()).unwrap();
///
/// // Wrap the future with a `Timeout` set to expire 10 milliseconds into the
/// // future.
/// if let Err(_) = timeout_at(Instant::now() + Duration::from_millis(10), rx).await {
/// println!("did not receive value within 10 ms");
/// }
/// # }
/// ```
pub fn timeout_at<F>(deadline: Instant, future: F) -> Timeout<F::IntoFuture>
where
F: IntoFuture,
{
let delay = sleep_until(deadline);
Timeout {
value: future.into_future(),
delay,
}
}
pin_project! {
/// Future returned by [`timeout`](timeout) and [`timeout_at`](timeout_at).
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct Timeout<T> {
#[pin]
value: T,
#[pin]
delay: Sleep,
}
}
impl<T> Timeout<T> {
pub(crate) fn new_with_delay(value: T, delay: Sleep) -> Timeout<T> {
Timeout { value, delay }
}
/// Gets a reference to the underlying value in this timeout.
pub fn get_ref(&self) -> &T {
&self.value
}
/// Gets a mutable reference to the underlying value in this timeout.
pub fn get_mut(&mut self) -> &mut T {
&mut self.value
}
/// Consumes this timeout, returning the underlying value.
pub fn into_inner(self) -> T {
self.value
}
}
impl<T> Future for Timeout<T>
where
T: Future,
{
type Output = Result<T::Output, Elapsed>;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
let me = self.project();
let had_budget_before = coop::has_budget_remaining();
// First, try polling the future
if let Poll::Ready(v) = me.value.poll(cx) {
return Poll::Ready(Ok(v));
}
let has_budget_now = coop::has_budget_remaining();
let delay = me.delay;
let poll_delay = || -> Poll<Self::Output> {
match delay.poll(cx) {
Poll::Ready(()) => Poll::Ready(Err(Elapsed::new())),
Poll::Pending => Poll::Pending,
}
};
if let (true, false) = (had_budget_before, has_budget_now) {
// if it is the underlying future that exhausted the budget, we poll
// the `delay` with an unconstrained one. This prevents pathological
// cases where the underlying future always exhausts the budget and
// we never get a chance to evaluate whether the timeout was hit or
// not.
coop::with_unconstrained(poll_delay)
} else {
poll_delay()
}
}
}