1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
use crate::abortable::{AbortHandle, AbortInner, Aborted};
use futures_core::future::Future;
use futures_core::task::{Context, Poll};
use futures_io::{AsyncBufRead, AsyncWrite};
use pin_project_lite::pin_project;
use std::io;
use std::pin::Pin;
use std::sync::atomic::Ordering;
use std::sync::Arc;
/// Creates a future which copies all the bytes from one object to another, with its `AbortHandle`.
///
/// The returned future will copy all the bytes read from this `AsyncBufRead` into the
/// `writer` specified. This future will only complete once abort has been requested or the `reader` has hit
/// EOF and all bytes have been written to and flushed from the `writer`
/// provided.
///
/// On success the number of bytes is returned. If aborted, `Aborted` is returned. Otherwise, the underlying error is returned.
///
/// # Examples
///
/// ```
/// # futures::executor::block_on(async {
/// use futures::io::{self, AsyncWriteExt, Cursor};
/// use futures::future::Aborted;
///
/// let reader = Cursor::new([1, 2, 3, 4]);
/// let mut writer = Cursor::new(vec![0u8; 5]);
///
/// let (fut, abort_handle) = io::copy_buf_abortable(reader, &mut writer);
/// let bytes = fut.await;
/// abort_handle.abort();
/// writer.close().await.unwrap();
/// match bytes {
/// Ok(Ok(n)) => {
/// assert_eq!(n, 4);
/// assert_eq!(writer.into_inner(), [1, 2, 3, 4, 0]);
/// Ok(n)
/// },
/// Ok(Err(a)) => {
/// Err::<u64, Aborted>(a)
/// }
/// Err(e) => panic!("{}", e)
/// }
/// # }).unwrap();
/// ```
pub fn copy_buf_abortable<R, W>(
reader: R,
writer: &mut W,
) -> (CopyBufAbortable<'_, R, W>, AbortHandle)
where
R: AsyncBufRead,
W: AsyncWrite + Unpin + ?Sized,
{
let (handle, reg) = AbortHandle::new_pair();
(CopyBufAbortable { reader, writer, amt: 0, inner: reg.inner }, handle)
}
pin_project! {
/// Future for the [`copy_buf_abortable()`] function.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct CopyBufAbortable<'a, R, W: ?Sized> {
#[pin]
reader: R,
writer: &'a mut W,
amt: u64,
inner: Arc<AbortInner>
}
}
macro_rules! ready_or_break {
($e:expr $(,)?) => {
match $e {
$crate::task::Poll::Ready(t) => t,
$crate::task::Poll::Pending => break,
}
};
}
impl<R, W> Future for CopyBufAbortable<'_, R, W>
where
R: AsyncBufRead,
W: AsyncWrite + Unpin + Sized,
{
type Output = Result<Result<u64, Aborted>, io::Error>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.project();
loop {
// Check if the task has been aborted
if this.inner.aborted.load(Ordering::Relaxed) {
return Poll::Ready(Ok(Err(Aborted)));
}
// Read some bytes from the reader, and if we have reached EOF, return total bytes read
let buffer = ready_or_break!(this.reader.as_mut().poll_fill_buf(cx))?;
if buffer.is_empty() {
ready_or_break!(Pin::new(&mut this.writer).poll_flush(cx))?;
return Poll::Ready(Ok(Ok(*this.amt)));
}
// Pass the buffer to the writer, and update the amount written
let i = ready_or_break!(Pin::new(&mut this.writer).poll_write(cx, buffer))?;
if i == 0 {
return Poll::Ready(Err(io::ErrorKind::WriteZero.into()));
}
*this.amt += i as u64;
this.reader.as_mut().consume(i);
}
// Schedule the task to be woken up again.
// Never called unless Poll::Pending is returned from io objects.
this.inner.waker.register(cx.waker());
// Check to see if the task was aborted between the first check and
// registration.
// Checking with `Relaxed` is sufficient because
// `register` introduces an `AcqRel` barrier.
if this.inner.aborted.load(Ordering::Relaxed) {
return Poll::Ready(Ok(Err(Aborted)));
}
Poll::Pending
}
}