1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
use core::ops::{Deref, DerefMut};
use crate::EitherOrBoth::*;
use either::Either;
/// Value that either holds a single A or B, or both.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum EitherOrBoth<A, B> {
/// Both values are present.
Both(A, B),
/// Only the left value of type `A` is present.
Left(A),
/// Only the right value of type `B` is present.
Right(B),
}
impl<A, B> EitherOrBoth<A, B> {
/// If `Left`, or `Both`, return true. Otherwise, return false.
pub fn has_left(&self) -> bool {
self.as_ref().left().is_some()
}
/// If `Right`, or `Both`, return true, otherwise, return false.
pub fn has_right(&self) -> bool {
self.as_ref().right().is_some()
}
/// If `Left`, return true. Otherwise, return false.
/// Exclusive version of [`has_left`](EitherOrBoth::has_left).
pub fn is_left(&self) -> bool {
match *self {
Left(_) => true,
_ => false,
}
}
/// If `Right`, return true. Otherwise, return false.
/// Exclusive version of [`has_right`](EitherOrBoth::has_right).
pub fn is_right(&self) -> bool {
match *self {
Right(_) => true,
_ => false,
}
}
/// If `Both`, return true. Otherwise, return false.
pub fn is_both(&self) -> bool {
self.as_ref().both().is_some()
}
/// If `Left`, or `Both`, return `Some` with the left value. Otherwise, return `None`.
pub fn left(self) -> Option<A> {
match self {
Left(left) | Both(left, _) => Some(left),
_ => None,
}
}
/// If `Right`, or `Both`, return `Some` with the right value. Otherwise, return `None`.
pub fn right(self) -> Option<B> {
match self {
Right(right) | Both(_, right) => Some(right),
_ => None,
}
}
/// If `Left`, return `Some` with the left value. If `Right` or `Both`, return `None`.
///
/// # Examples
///
/// ```
/// // On the `Left` variant.
/// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}};
/// let x: EitherOrBoth<_, ()> = Left("bonjour");
/// assert_eq!(x.just_left(), Some("bonjour"));
///
/// // On the `Right` variant.
/// let x: EitherOrBoth<(), _> = Right("hola");
/// assert_eq!(x.just_left(), None);
///
/// // On the `Both` variant.
/// let x = Both("bonjour", "hola");
/// assert_eq!(x.just_left(), None);
/// ```
pub fn just_left(self) -> Option<A> {
match self {
Left(left) => Some(left),
_ => None,
}
}
/// If `Right`, return `Some` with the right value. If `Left` or `Both`, return `None`.
///
/// # Examples
///
/// ```
/// // On the `Left` variant.
/// # use itertools::{EitherOrBoth::{Left, Right, Both}, EitherOrBoth};
/// let x: EitherOrBoth<_, ()> = Left("auf wiedersehen");
/// assert_eq!(x.just_left(), Some("auf wiedersehen"));
///
/// // On the `Right` variant.
/// let x: EitherOrBoth<(), _> = Right("adios");
/// assert_eq!(x.just_left(), None);
///
/// // On the `Both` variant.
/// let x = Both("auf wiedersehen", "adios");
/// assert_eq!(x.just_left(), None);
/// ```
pub fn just_right(self) -> Option<B> {
match self {
Right(right) => Some(right),
_ => None,
}
}
/// If `Both`, return `Some` containing the left and right values. Otherwise, return `None`.
pub fn both(self) -> Option<(A, B)> {
match self {
Both(a, b) => Some((a, b)),
_ => None,
}
}
/// If `Left` or `Both`, return the left value. Otherwise, convert the right value and return it.
pub fn into_left(self) -> A
where
B: Into<A>,
{
match self {
Left(a) | Both(a, _) => a,
Right(b) => b.into(),
}
}
/// If `Right` or `Both`, return the right value. Otherwise, convert the left value and return it.
pub fn into_right(self) -> B
where
A: Into<B>,
{
match self {
Right(b) | Both(_, b) => b,
Left(a) => a.into(),
}
}
/// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&A, &B>`.
pub fn as_ref(&self) -> EitherOrBoth<&A, &B> {
match *self {
Left(ref left) => Left(left),
Right(ref right) => Right(right),
Both(ref left, ref right) => Both(left, right),
}
}
/// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut A, &mut B>`.
pub fn as_mut(&mut self) -> EitherOrBoth<&mut A, &mut B> {
match *self {
Left(ref mut left) => Left(left),
Right(ref mut right) => Right(right),
Both(ref mut left, ref mut right) => Both(left, right),
}
}
/// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&_, &_>` using the [`Deref`] trait.
pub fn as_deref(&self) -> EitherOrBoth<&A::Target, &B::Target>
where
A: Deref,
B: Deref,
{
match *self {
Left(ref left) => Left(left),
Right(ref right) => Right(right),
Both(ref left, ref right) => Both(left, right),
}
}
/// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut _, &mut _>` using the [`DerefMut`] trait.
pub fn as_deref_mut(&mut self) -> EitherOrBoth<&mut A::Target, &mut B::Target>
where
A: DerefMut,
B: DerefMut,
{
match *self {
Left(ref mut left) => Left(left),
Right(ref mut right) => Right(right),
Both(ref mut left, ref mut right) => Both(left, right),
}
}
/// Convert `EitherOrBoth<A, B>` to `EitherOrBoth<B, A>`.
pub fn flip(self) -> EitherOrBoth<B, A> {
match self {
Left(a) => Right(a),
Right(b) => Left(b),
Both(a, b) => Both(b, a),
}
}
/// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, b)` variants. If it is
/// present rewrapping the result in `self`'s original variant.
pub fn map_left<F, M>(self, f: F) -> EitherOrBoth<M, B>
where
F: FnOnce(A) -> M,
{
match self {
Both(a, b) => Both(f(a), b),
Left(a) => Left(f(a)),
Right(b) => Right(b),
}
}
/// Apply the function `f` on the value `b` in `Right(b)` or `Both(a, b)` variants.
/// If it is present rewrapping the result in `self`'s original variant.
pub fn map_right<F, M>(self, f: F) -> EitherOrBoth<A, M>
where
F: FnOnce(B) -> M,
{
match self {
Left(a) => Left(a),
Right(b) => Right(f(b)),
Both(a, b) => Both(a, f(b)),
}
}
/// Apply the functions `f` and `g` on the value `a` and `b` respectively;
/// found in `Left(a)`, `Right(b)`, or `Both(a, b)` variants.
/// The Result is rewrapped `self`'s original variant.
pub fn map_any<F, L, G, R>(self, f: F, g: G) -> EitherOrBoth<L, R>
where
F: FnOnce(A) -> L,
G: FnOnce(B) -> R,
{
match self {
Left(a) => Left(f(a)),
Right(b) => Right(g(b)),
Both(a, b) => Both(f(a), g(b)),
}
}
/// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, _)` variants if it is
/// present.
pub fn left_and_then<F, L>(self, f: F) -> EitherOrBoth<L, B>
where
F: FnOnce(A) -> EitherOrBoth<L, B>,
{
match self {
Left(a) | Both(a, _) => f(a),
Right(b) => Right(b),
}
}
/// Apply the function `f` on the value `b`
/// in `Right(b)` or `Both(_, b)` variants if it is present.
pub fn right_and_then<F, R>(self, f: F) -> EitherOrBoth<A, R>
where
F: FnOnce(B) -> EitherOrBoth<A, R>,
{
match self {
Left(a) => Left(a),
Right(b) | Both(_, b) => f(b),
}
}
/// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
/// Otherwise, returns the wrapped value for the present element, and the supplied
/// value for the other. The first (`l`) argument is used for a missing `Left`
/// value. The second (`r`) argument is used for a missing `Right` value.
///
/// Arguments passed to `or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`or_else`],
/// which is lazily evaluated.
///
/// [`or_else`]: EitherOrBoth::or_else
///
/// # Examples
///
/// ```
/// # use itertools::EitherOrBoth;
/// assert_eq!(EitherOrBoth::Both("tree", 1).or("stone", 5), ("tree", 1));
/// assert_eq!(EitherOrBoth::Left("tree").or("stone", 5), ("tree", 5));
/// assert_eq!(EitherOrBoth::Right(1).or("stone", 5), ("stone", 1));
/// ```
pub fn or(self, l: A, r: B) -> (A, B) {
match self {
Left(inner_l) => (inner_l, r),
Right(inner_r) => (l, inner_r),
Both(inner_l, inner_r) => (inner_l, inner_r),
}
}
/// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
/// Otherwise, returns the wrapped value for the present element, and the [`default`](Default::default)
/// for the other.
pub fn or_default(self) -> (A, B)
where
A: Default,
B: Default,
{
match self {
EitherOrBoth::Left(l) => (l, B::default()),
EitherOrBoth::Right(r) => (A::default(), r),
EitherOrBoth::Both(l, r) => (l, r),
}
}
/// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
/// Otherwise, returns the wrapped value for the present element, and computes the
/// missing value with the supplied closure. The first argument (`l`) is used for a
/// missing `Left` value. The second argument (`r`) is used for a missing `Right` value.
///
/// # Examples
///
/// ```
/// # use itertools::EitherOrBoth;
/// let k = 10;
/// assert_eq!(EitherOrBoth::Both("tree", 1).or_else(|| "stone", || 2 * k), ("tree", 1));
/// assert_eq!(EitherOrBoth::Left("tree").or_else(|| "stone", || 2 * k), ("tree", 20));
/// assert_eq!(EitherOrBoth::Right(1).or_else(|| "stone", || 2 * k), ("stone", 1));
/// ```
pub fn or_else<L: FnOnce() -> A, R: FnOnce() -> B>(self, l: L, r: R) -> (A, B) {
match self {
Left(inner_l) => (inner_l, r()),
Right(inner_r) => (l(), inner_r),
Both(inner_l, inner_r) => (inner_l, inner_r),
}
}
/// Returns a mutable reference to the left value. If the left value is not present,
/// it is replaced with `val`.
pub fn left_or_insert(&mut self, val: A) -> &mut A {
self.left_or_insert_with(|| val)
}
/// Returns a mutable reference to the right value. If the right value is not present,
/// it is replaced with `val`.
pub fn right_or_insert(&mut self, val: B) -> &mut B {
self.right_or_insert_with(|| val)
}
/// If the left value is not present, replace it the value computed by the closure `f`.
/// Returns a mutable reference to the now-present left value.
pub fn left_or_insert_with<F>(&mut self, f: F) -> &mut A
where
F: FnOnce() -> A,
{
match self {
Left(left) | Both(left, _) => left,
Right(_) => self.insert_left(f()),
}
}
/// If the right value is not present, replace it the value computed by the closure `f`.
/// Returns a mutable reference to the now-present right value.
pub fn right_or_insert_with<F>(&mut self, f: F) -> &mut B
where
F: FnOnce() -> B,
{
match self {
Right(right) | Both(_, right) => right,
Left(_) => self.insert_right(f()),
}
}
/// Sets the `left` value of this instance, and returns a mutable reference to it.
/// Does not affect the `right` value.
///
/// # Examples
/// ```
/// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}};
///
/// // Overwriting a pre-existing value.
/// let mut either: EitherOrBoth<_, ()> = Left(0_u32);
/// assert_eq!(*either.insert_left(69), 69);
///
/// // Inserting a second value.
/// let mut either = Right("no");
/// assert_eq!(*either.insert_left("yes"), "yes");
/// assert_eq!(either, Both("yes", "no"));
/// ```
pub fn insert_left(&mut self, val: A) -> &mut A {
match self {
Left(left) | Both(left, _) => {
*left = val;
left
}
Right(right) => {
// This is like a map in place operation. We move out of the reference,
// change the value, and then move back into the reference.
unsafe {
// SAFETY: We know this pointer is valid for reading since we got it from a reference.
let right = std::ptr::read(right as *mut _);
// SAFETY: Again, we know the pointer is valid since we got it from a reference.
std::ptr::write(self as *mut _, Both(val, right));
}
if let Both(left, _) = self {
left
} else {
// SAFETY: The above pattern will always match, since we just
// set `self` equal to `Both`.
unsafe { std::hint::unreachable_unchecked() }
}
}
}
}
/// Sets the `right` value of this instance, and returns a mutable reference to it.
/// Does not affect the `left` value.
///
/// # Examples
/// ```
/// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Both}};
/// // Overwriting a pre-existing value.
/// let mut either: EitherOrBoth<_, ()> = Left(0_u32);
/// assert_eq!(*either.insert_left(69), 69);
///
/// // Inserting a second value.
/// let mut either = Left("what's");
/// assert_eq!(*either.insert_right(9 + 10), 21 - 2);
/// assert_eq!(either, Both("what's", 9+10));
/// ```
pub fn insert_right(&mut self, val: B) -> &mut B {
match self {
Right(right) | Both(_, right) => {
*right = val;
right
}
Left(left) => {
// This is like a map in place operation. We move out of the reference,
// change the value, and then move back into the reference.
unsafe {
// SAFETY: We know this pointer is valid for reading since we got it from a reference.
let left = std::ptr::read(left as *mut _);
// SAFETY: Again, we know the pointer is valid since we got it from a reference.
std::ptr::write(self as *mut _, Both(left, val));
}
if let Both(_, right) = self {
right
} else {
// SAFETY: The above pattern will always match, since we just
// set `self` equal to `Both`.
unsafe { std::hint::unreachable_unchecked() }
}
}
}
}
/// Set `self` to `Both(..)`, containing the specified left and right values,
/// and returns a mutable reference to those values.
pub fn insert_both(&mut self, left: A, right: B) -> (&mut A, &mut B) {
*self = Both(left, right);
if let Both(left, right) = self {
(left, right)
} else {
// SAFETY: The above pattern will always match, since we just
// set `self` equal to `Both`.
unsafe { std::hint::unreachable_unchecked() }
}
}
}
impl<T> EitherOrBoth<T, T> {
/// Return either value of left, right, or apply a function `f` to both values if both are present.
/// The input function has to return the same type as both Right and Left carry.
///
/// # Examples
/// ```
/// # use itertools::EitherOrBoth;
/// assert_eq!(EitherOrBoth::Both(3, 7).reduce(u32::max), 7);
/// assert_eq!(EitherOrBoth::Left(3).reduce(u32::max), 3);
/// assert_eq!(EitherOrBoth::Right(7).reduce(u32::max), 7);
/// ```
pub fn reduce<F>(self, f: F) -> T
where
F: FnOnce(T, T) -> T,
{
match self {
Left(a) => a,
Right(b) => b,
Both(a, b) => f(a, b),
}
}
}
impl<A, B> Into<Option<Either<A, B>>> for EitherOrBoth<A, B> {
fn into(self) -> Option<Either<A, B>> {
match self {
EitherOrBoth::Left(l) => Some(Either::Left(l)),
EitherOrBoth::Right(r) => Some(Either::Right(r)),
_ => None,
}
}
}