1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Cryptographic pseudo-random number generation.
//!
//! An application should create a single `SystemRandom` and then use it for
//! all randomness generation. Functions that generate random bytes should take
//! a `&dyn SecureRandom` parameter instead of instantiating their own. Besides
//! being more efficient, this also helps document where non-deterministic
//! (random) outputs occur. Taking a reference to a `SecureRandom` also helps
//! with testing techniques like fuzzing, where it is useful to use a
//! (non-secure) deterministic implementation of `SecureRandom` so that results
//! can be replayed. Following this pattern also may help with sandboxing
//! (seccomp filters on Linux in particular). See `SystemRandom`'s
//! documentation for more details.
use crate::error;
/// A secure random number generator.
pub trait SecureRandom: sealed::SecureRandom {
/// Fills `dest` with random bytes.
fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>;
}
impl<T> SecureRandom for T
where
T: sealed::SecureRandom,
{
#[inline(always)]
fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
self.fill_impl(dest)
}
}
/// A random value constructed from a `SecureRandom` that hasn't been exposed
/// through any safe Rust interface.
///
/// Intentionally does not implement any traits other than `Sized`.
pub struct Random<T: RandomlyConstructable>(T);
impl<T: RandomlyConstructable> Random<T> {
/// Expose the random value.
#[inline]
pub fn expose(self) -> T {
self.0
}
}
/// Generate the new random value using `rng`.
#[inline]
pub fn generate<T: RandomlyConstructable>(
rng: &dyn SecureRandom,
) -> Result<Random<T>, error::Unspecified>
where
T: RandomlyConstructable,
{
let mut r = T::zero();
rng.fill(r.as_mut_bytes())?;
Ok(Random(r))
}
pub(crate) mod sealed {
use crate::error;
pub trait SecureRandom: core::fmt::Debug {
/// Fills `dest` with random bytes.
fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>;
}
pub trait RandomlyConstructable: Sized {
fn zero() -> Self; // `Default::default()`
fn as_mut_bytes(&mut self) -> &mut [u8]; // `AsMut<[u8]>::as_mut`
}
macro_rules! impl_random_arrays {
[ $($len:expr)+ ] => {
$(
impl RandomlyConstructable for [u8; $len] {
#[inline]
fn zero() -> Self { [0; $len] }
#[inline]
fn as_mut_bytes(&mut self) -> &mut [u8] { &mut self[..] }
}
)+
}
}
impl_random_arrays![4 8 16 32 48 64 128 256];
}
/// A type that can be returned by `ring::rand::generate()`.
pub trait RandomlyConstructable: self::sealed::RandomlyConstructable {}
impl<T> RandomlyConstructable for T where T: self::sealed::RandomlyConstructable {}
/// A secure random number generator where the random values come directly
/// from the operating system.
///
/// A single `SystemRandom` may be shared across multiple threads safely.
///
/// `new()` is guaranteed to always succeed and to have low latency; it won't
/// try to open or read from a file or do similar things. The first call to
/// `fill()` may block a substantial amount of time since any and all
/// initialization is deferred to it. Therefore, it may be a good idea to call
/// `fill()` once at a non-latency-sensitive time to minimize latency for
/// future calls.
///
/// On Linux (including Android), `fill()` will use the [`getrandom`] syscall.
/// If the kernel is too old to support `getrandom` then by default `fill()`
/// falls back to reading from `/dev/urandom`. This decision is made the first
/// time `fill` *succeeds*. The fallback to `/dev/urandom` can be disabled by
/// disabling the `dev_urandom_fallback` default feature; this should be done
/// whenever the target system is known to support `getrandom`. When
/// `/dev/urandom` is used, a file handle for `/dev/urandom` won't be opened
/// until `fill` is called; `SystemRandom::new()` will not open `/dev/urandom`
/// or do other potentially-high-latency things. The file handle will never be
/// closed, until the operating system closes it at process shutdown. All
/// instances of `SystemRandom` will share a single file handle. To properly
/// implement seccomp filtering when the `dev_urandom_fallback` default feature
/// is disabled, allow `getrandom` through. When the fallback is enabled, allow
/// file opening, `getrandom`, and `read` up until the first call to `fill()`
/// succeeds; after that, allow `getrandom` and `read`.
///
/// On macOS and iOS, `fill()` is implemented using `SecRandomCopyBytes`.
///
/// On wasm32-unknown-unknown (non-WASI), `fill()` is implemented using
/// `window.crypto.getRandomValues()`. It must be used in a context where the
/// global object is a `Window`; i.e. it must not be used in a Worker or a
/// non-browser context.
///
/// On Windows, `fill` is implemented using the platform's API for secure
/// random number generation.
///
/// [`getrandom`]: http://man7.org/linux/man-pages/man2/getrandom.2.html
#[derive(Clone, Debug)]
pub struct SystemRandom(());
impl SystemRandom {
/// Constructs a new `SystemRandom`.
#[inline(always)]
pub fn new() -> Self {
Self(())
}
}
impl sealed::SecureRandom for SystemRandom {
#[inline(always)]
fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
fill_impl(dest)
}
}
impl crate::sealed::Sealed for SystemRandom {}
#[cfg(any(
all(
any(target_os = "android", target_os = "linux"),
not(feature = "dev_urandom_fallback")
),
target_arch = "wasm32",
windows
))]
use self::sysrand::fill as fill_impl;
#[cfg(all(
any(target_os = "android", target_os = "linux"),
feature = "dev_urandom_fallback"
))]
use self::sysrand_or_urandom::fill as fill_impl;
#[cfg(any(
target_os = "dragonfly",
target_os = "freebsd",
target_os = "illumos",
target_os = "netbsd",
target_os = "openbsd",
target_os = "solaris",
))]
use self::urandom::fill as fill_impl;
#[cfg(any(target_os = "macos", target_os = "ios"))]
use self::darwin::fill as fill_impl;
#[cfg(any(target_os = "fuchsia"))]
use self::fuchsia::fill as fill_impl;
#[cfg(any(target_os = "android", target_os = "linux"))]
mod sysrand_chunk {
use crate::{c, error};
#[inline]
pub fn chunk(dest: &mut [u8]) -> Result<usize, error::Unspecified> {
use libc::c_long;
// See `SYS_getrandom` in #include <sys/syscall.h>.
#[cfg(target_arch = "aarch64")]
const SYS_GETRANDOM: c_long = 278;
#[cfg(target_arch = "arm")]
const SYS_GETRANDOM: c_long = 384;
#[cfg(target_arch = "x86")]
const SYS_GETRANDOM: c_long = 355;
#[cfg(target_arch = "x86_64")]
const SYS_GETRANDOM: c_long = 318;
let chunk_len: c::size_t = dest.len();
let r = unsafe { libc::syscall(SYS_GETRANDOM, dest.as_mut_ptr(), chunk_len, 0) };
if r < 0 {
let errno;
#[cfg(target_os = "linux")]
{
errno = unsafe { *libc::__errno_location() };
}
#[cfg(target_os = "android")]
{
errno = unsafe { *libc::__errno() };
}
if errno == libc::EINTR {
// If an interrupt occurs while getrandom() is blocking to wait
// for the entropy pool, then EINTR is returned. Returning 0
// will cause the caller to try again.
return Ok(0);
}
return Err(error::Unspecified);
}
Ok(r as usize)
}
}
#[cfg(all(
target_arch = "wasm32",
target_vendor = "unknown",
target_os = "unknown",
target_env = "",
))]
mod sysrand_chunk {
use crate::error;
pub fn chunk(mut dest: &mut [u8]) -> Result<usize, error::Unspecified> {
// This limit is specified in
// https://www.w3.org/TR/WebCryptoAPI/#Crypto-method-getRandomValues.
const MAX_LEN: usize = 65_536;
if dest.len() > MAX_LEN {
dest = &mut dest[..MAX_LEN];
};
let _ = web_sys::window()
.ok_or(error::Unspecified)?
.crypto()
.map_err(|_| error::Unspecified)?
.get_random_values_with_u8_array(dest)
.map_err(|_| error::Unspecified)?;
Ok(dest.len())
}
}
#[cfg(windows)]
mod sysrand_chunk {
use crate::{error, polyfill};
#[inline]
pub fn chunk(dest: &mut [u8]) -> Result<usize, error::Unspecified> {
use winapi::shared::wtypesbase::ULONG;
assert!(core::mem::size_of::<usize>() >= core::mem::size_of::<ULONG>());
let len = core::cmp::min(dest.len(), polyfill::usize_from_u32(ULONG::max_value()));
let result = unsafe {
winapi::um::ntsecapi::RtlGenRandom(
dest.as_mut_ptr() as *mut winapi::ctypes::c_void,
len as ULONG,
)
};
if result == 0 {
return Err(error::Unspecified);
}
Ok(len)
}
}
#[cfg(any(
target_os = "android",
target_os = "linux",
target_arch = "wasm32",
windows
))]
mod sysrand {
use super::sysrand_chunk::chunk;
use crate::error;
pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
let mut read_len = 0;
while read_len < dest.len() {
let chunk_len = chunk(&mut dest[read_len..])?;
read_len += chunk_len;
}
Ok(())
}
}
// Keep the `cfg` conditions in sync with the conditions in lib.rs.
#[cfg(all(
any(target_os = "android", target_os = "linux"),
feature = "dev_urandom_fallback"
))]
mod sysrand_or_urandom {
use crate::error;
enum Mechanism {
Sysrand,
DevURandom,
}
#[inline]
pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
use once_cell::sync::Lazy;
static MECHANISM: Lazy<Mechanism> = Lazy::new(|| {
let mut dummy = [0u8; 1];
if super::sysrand_chunk::chunk(&mut dummy[..]).is_err() {
Mechanism::DevURandom
} else {
Mechanism::Sysrand
}
});
match *MECHANISM {
Mechanism::Sysrand => super::sysrand::fill(dest),
Mechanism::DevURandom => super::urandom::fill(dest),
}
}
}
#[cfg(any(
all(
any(target_os = "android", target_os = "linux"),
feature = "dev_urandom_fallback"
),
target_os = "dragonfly",
target_os = "freebsd",
target_os = "netbsd",
target_os = "openbsd",
target_os = "solaris",
target_os = "illumos"
))]
mod urandom {
use crate::error;
#[cfg_attr(any(target_os = "android", target_os = "linux"), cold, inline(never))]
pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
extern crate std;
use once_cell::sync::Lazy;
static FILE: Lazy<Result<std::fs::File, std::io::Error>> =
Lazy::new(|| std::fs::File::open("/dev/urandom"));
match *FILE {
Ok(ref file) => {
use std::io::Read;
(&*file).read_exact(dest).map_err(|_| error::Unspecified)
}
Err(_) => Err(error::Unspecified),
}
}
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
mod darwin {
use crate::{c, error};
pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
let r = unsafe { SecRandomCopyBytes(kSecRandomDefault, dest.len(), dest.as_mut_ptr()) };
match r {
0 => Ok(()),
_ => Err(error::Unspecified),
}
}
// XXX: This is emulating an opaque type with a non-opaque type. TODO: Fix
// this when
// https://github.com/rust-lang/rfcs/pull/1861#issuecomment-274613536 is
// resolved.
#[repr(C)]
struct SecRandomRef([u8; 0]);
#[link(name = "Security", kind = "framework")]
extern "C" {
static kSecRandomDefault: &'static SecRandomRef;
// For now `rnd` must be `kSecRandomDefault`.
#[must_use]
fn SecRandomCopyBytes(
rnd: &'static SecRandomRef,
count: c::size_t,
bytes: *mut u8,
) -> c::int;
}
}
#[cfg(any(target_os = "fuchsia"))]
mod fuchsia {
use crate::error;
pub fn fill(dest: &mut [u8]) -> Result<(), error::Unspecified> {
unsafe {
zx_cprng_draw(dest.as_mut_ptr(), dest.len());
}
Ok(())
}
#[link(name = "zircon")]
extern "C" {
fn zx_cprng_draw(buffer: *mut u8, length: usize);
}
}