1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
// Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
// in the future, this will change to the reverse. For now, suppress this
// warning and generally stick with being explicit about unsafety.
#![allow(unused_unsafe)]
#![cfg_attr(not(feature = "rt"), allow(dead_code))]
//! Time driver.
mod entry;
pub(crate) use entry::TimerEntry;
use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION};
mod handle;
pub(crate) use self::handle::Handle;
use self::wheel::Wheel;
mod source;
pub(crate) use source::TimeSource;
mod wheel;
use crate::loom::sync::atomic::{AtomicBool, Ordering};
use crate::loom::sync::Mutex;
use crate::runtime::driver::{self, IoHandle, IoStack};
use crate::time::error::Error;
use crate::time::{Clock, Duration};
use crate::util::WakeList;
use crate::loom::sync::atomic::AtomicU64;
use std::fmt;
use std::sync::RwLock;
use std::{num::NonZeroU64, ptr::NonNull};
struct AtomicOptionNonZeroU64(AtomicU64);
// A helper type to store the `next_wake`.
impl AtomicOptionNonZeroU64 {
fn new(val: Option<NonZeroU64>) -> Self {
Self(AtomicU64::new(val.map_or(0, NonZeroU64::get)))
}
fn store(&self, val: Option<NonZeroU64>) {
self.0
.store(val.map_or(0, NonZeroU64::get), Ordering::Relaxed);
}
fn load(&self) -> Option<NonZeroU64> {
NonZeroU64::new(self.0.load(Ordering::Relaxed))
}
}
/// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
///
/// A `Driver` instance tracks the state necessary for managing time and
/// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
///
/// It is expected that a single instance manages many individual [`Sleep`][sleep]
/// instances. The `Driver` implementation is thread-safe and, as such, is able
/// to handle callers from across threads.
///
/// After creating the `Driver` instance, the caller must repeatedly call `park`
/// or `park_timeout`. The time driver will perform no work unless `park` or
/// `park_timeout` is called repeatedly.
///
/// The driver has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
/// elapsed will be notified with an error. At this point, calling `poll` on the
/// [`Sleep`][sleep] instance will result in panic.
///
/// # Implementation
///
/// The time driver is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The implementation maintains six wheels arranged in a set of levels. As the
/// levels go up, the slots of the associated wheel represent larger intervals
/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
/// time equal to the wheel at the lower level. At level zero, each slot
/// represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// `Sleep` instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
///
/// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf
/// [sleep]: crate::time::Sleep
/// [timeout]: crate::time::Timeout
/// [interval]: crate::time::Interval
#[derive(Debug)]
pub(crate) struct Driver {
/// Parker to delegate to.
park: IoStack,
}
/// Timer state shared between `Driver`, `Handle`, and `Registration`.
struct Inner {
/// The earliest time at which we promise to wake up without unparking.
next_wake: AtomicOptionNonZeroU64,
/// Sharded Timer wheels.
wheels: RwLock<ShardedWheel>,
/// Number of entries in the sharded timer wheels.
wheels_len: u32,
/// True if the driver is being shutdown.
pub(super) is_shutdown: AtomicBool,
// When `true`, a call to `park_timeout` should immediately return and time
// should not advance. One reason for this to be `true` is if the task
// passed to `Runtime::block_on` called `task::yield_now()`.
//
// While it may look racy, it only has any effect when the clock is paused
// and pausing the clock is restricted to a single-threaded runtime.
#[cfg(feature = "test-util")]
did_wake: AtomicBool,
}
/// Wrapper around the sharded timer wheels.
struct ShardedWheel(Box<[Mutex<wheel::Wheel>]>);
// ===== impl Driver =====
impl Driver {
/// Creates a new `Driver` instance that uses `park` to block the current
/// thread and `time_source` to get the current time and convert to ticks.
///
/// Specifying the source of time is useful when testing.
pub(crate) fn new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle) {
assert!(shards > 0);
let time_source = TimeSource::new(clock);
let wheels: Vec<_> = (0..shards)
.map(|_| Mutex::new(wheel::Wheel::new()))
.collect();
let handle = Handle {
time_source,
inner: Inner {
next_wake: AtomicOptionNonZeroU64::new(None),
wheels: RwLock::new(ShardedWheel(wheels.into_boxed_slice())),
wheels_len: shards,
is_shutdown: AtomicBool::new(false),
#[cfg(feature = "test-util")]
did_wake: AtomicBool::new(false),
},
};
let driver = Driver { park };
(driver, handle)
}
pub(crate) fn park(&mut self, handle: &driver::Handle) {
self.park_internal(handle, None);
}
pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) {
self.park_internal(handle, Some(duration));
}
pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) {
let handle = rt_handle.time();
if handle.is_shutdown() {
return;
}
handle.inner.is_shutdown.store(true, Ordering::SeqCst);
// Advance time forward to the end of time.
handle.process_at_time(0, u64::MAX);
self.park.shutdown(rt_handle);
}
fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) {
let handle = rt_handle.time();
assert!(!handle.is_shutdown());
// Finds out the min expiration time to park.
let expiration_time = {
let mut wheels_lock = rt_handle
.time()
.inner
.wheels
.write()
.expect("Timer wheel shards poisoned");
let expiration_time = wheels_lock
.0
.iter_mut()
.filter_map(|wheel| wheel.get_mut().next_expiration_time())
.min();
rt_handle
.time()
.inner
.next_wake
.store(next_wake_time(expiration_time));
expiration_time
};
match expiration_time {
Some(when) => {
let now = handle.time_source.now(rt_handle.clock());
// Note that we effectively round up to 1ms here - this avoids
// very short-duration microsecond-resolution sleeps that the OS
// might treat as zero-length.
let mut duration = handle
.time_source
.tick_to_duration(when.saturating_sub(now));
if duration > Duration::from_millis(0) {
if let Some(limit) = limit {
duration = std::cmp::min(limit, duration);
}
self.park_thread_timeout(rt_handle, duration);
} else {
self.park.park_timeout(rt_handle, Duration::from_secs(0));
}
}
None => {
if let Some(duration) = limit {
self.park_thread_timeout(rt_handle, duration);
} else {
self.park.park(rt_handle);
}
}
}
// Process pending timers after waking up
handle.process(rt_handle.clock());
}
cfg_test_util! {
fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
let handle = rt_handle.time();
let clock = rt_handle.clock();
if clock.can_auto_advance() {
self.park.park_timeout(rt_handle, Duration::from_secs(0));
// If the time driver was woken, then the park completed
// before the "duration" elapsed (usually caused by a
// yield in `Runtime::block_on`). In this case, we don't
// advance the clock.
if !handle.did_wake() {
// Simulate advancing time
if let Err(msg) = clock.advance(duration) {
panic!("{}", msg);
}
}
} else {
self.park.park_timeout(rt_handle, duration);
}
}
}
cfg_not_test_util! {
fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
self.park.park_timeout(rt_handle, duration);
}
}
}
// Helper function to turn expiration_time into next_wake_time.
// Since the `park_timeout` will round up to 1ms for avoiding very
// short-duration microsecond-resolution sleeps, we do the same here.
// The conversion is as follows
// None => None
// Some(0) => Some(1)
// Some(i) => Some(i)
fn next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64> {
expiration_time.and_then(|v| {
if v == 0 {
NonZeroU64::new(1)
} else {
NonZeroU64::new(v)
}
})
}
impl Handle {
/// Runs timer related logic, and returns the next wakeup time
pub(self) fn process(&self, clock: &Clock) {
let now = self.time_source().now(clock);
// For fairness, randomly select one to start.
let shards = self.inner.get_shard_size();
let start = crate::runtime::context::thread_rng_n(shards);
self.process_at_time(start, now);
}
pub(self) fn process_at_time(&self, start: u32, now: u64) {
let shards = self.inner.get_shard_size();
let expiration_time = (start..shards + start)
.filter_map(|i| self.process_at_sharded_time(i, now))
.min();
self.inner.next_wake.store(next_wake_time(expiration_time));
}
// Returns the next wakeup time of this shard.
pub(self) fn process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64> {
let mut waker_list = WakeList::new();
let mut wheels_lock = self
.inner
.wheels
.read()
.expect("Timer wheel shards poisoned");
let mut lock = wheels_lock.lock_sharded_wheel(id);
if now < lock.elapsed() {
// Time went backwards! This normally shouldn't happen as the Rust language
// guarantees that an Instant is monotonic, but can happen when running
// Linux in a VM on a Windows host due to std incorrectly trusting the
// hardware clock to be monotonic.
//
// See <https://github.com/tokio-rs/tokio/issues/3619> for more information.
now = lock.elapsed();
}
while let Some(entry) = lock.poll(now) {
debug_assert!(unsafe { entry.is_pending() });
// SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
if let Some(waker) = unsafe { entry.fire(Ok(())) } {
waker_list.push(waker);
if !waker_list.can_push() {
// Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
drop(lock);
drop(wheels_lock);
waker_list.wake_all();
wheels_lock = self
.inner
.wheels
.read()
.expect("Timer wheel shards poisoned");
lock = wheels_lock.lock_sharded_wheel(id);
}
}
}
let next_wake_up = lock.poll_at();
drop(lock);
drop(wheels_lock);
waker_list.wake_all();
next_wake_up
}
/// Removes a registered timer from the driver.
///
/// The timer will be moved to the cancelled state. Wakers will _not_ be
/// invoked. If the timer is already completed, this function is a no-op.
///
/// This function always acquires the driver lock, even if the entry does
/// not appear to be registered.
///
/// SAFETY: The timer must not be registered with some other driver, and
/// `add_entry` must not be called concurrently.
pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
unsafe {
let wheels_lock = self
.inner
.wheels
.read()
.expect("Timer wheel shards poisoned");
let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id());
if entry.as_ref().might_be_registered() {
lock.remove(entry);
}
entry.as_ref().handle().fire(Ok(()));
}
}
/// Removes and re-adds an entry to the driver.
///
/// SAFETY: The timer must be either unregistered, or registered with this
/// driver. No other threads are allowed to concurrently manipulate the
/// timer at all (the current thread should hold an exclusive reference to
/// the `TimerEntry`)
pub(self) unsafe fn reregister(
&self,
unpark: &IoHandle,
new_tick: u64,
entry: NonNull<TimerShared>,
) {
let waker = unsafe {
let wheels_lock = self
.inner
.wheels
.read()
.expect("Timer wheel shards poisoned");
let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id());
// We may have raced with a firing/deregistration, so check before
// deregistering.
if unsafe { entry.as_ref().might_be_registered() } {
lock.remove(entry);
}
// Now that we have exclusive control of this entry, mint a handle to reinsert it.
let entry = entry.as_ref().handle();
if self.is_shutdown() {
unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
} else {
entry.set_expiration(new_tick);
// Note: We don't have to worry about racing with some other resetting
// thread, because add_entry and reregister require exclusive control of
// the timer entry.
match unsafe { lock.insert(entry) } {
Ok(when) => {
if self
.inner
.next_wake
.load()
.map(|next_wake| when < next_wake.get())
.unwrap_or(true)
{
unpark.unpark();
}
None
}
Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe {
entry.fire(Ok(()))
},
}
}
// Must release lock before invoking waker to avoid the risk of deadlock.
};
// The timer was fired synchronously as a result of the reregistration.
// Wake the waker; this is needed because we might reset _after_ a poll,
// and otherwise the task won't be awoken to poll again.
if let Some(waker) = waker {
waker.wake();
}
}
cfg_test_util! {
fn did_wake(&self) -> bool {
self.inner.did_wake.swap(false, Ordering::SeqCst)
}
}
}
// ===== impl Inner =====
impl Inner {
// Check whether the driver has been shutdown
pub(super) fn is_shutdown(&self) -> bool {
self.is_shutdown.load(Ordering::SeqCst)
}
// Gets the number of shards.
fn get_shard_size(&self) -> u32 {
self.wheels_len
}
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Inner").finish()
}
}
// ===== impl ShardedWheel =====
impl ShardedWheel {
/// Locks the driver's sharded wheel structure.
pub(super) fn lock_sharded_wheel(
&self,
shard_id: u32,
) -> crate::loom::sync::MutexGuard<'_, Wheel> {
let index = shard_id % (self.0.len() as u32);
// Safety: This modulo operation ensures that the index is not out of bounds.
unsafe { self.0.get_unchecked(index as usize) }.lock()
}
}
#[cfg(test)]
mod tests;