indexmap/
map.rs

1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19    Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
20    Values, ValuesMut,
21};
22pub use self::mutable::MutableEntryKey;
23pub use self::mutable::MutableKeys;
24pub use self::slice::Slice;
25
26#[cfg(feature = "rayon")]
27pub use crate::rayon::map as rayon;
28
29use ::core::cmp::Ordering;
30use ::core::fmt;
31use ::core::hash::{BuildHasher, Hash, Hasher};
32use ::core::mem;
33use ::core::ops::{Index, IndexMut, RangeBounds};
34use alloc::boxed::Box;
35use alloc::vec::Vec;
36
37#[cfg(feature = "std")]
38use std::collections::hash_map::RandomState;
39
40pub(crate) use self::core::{ExtractCore, IndexMapCore};
41use crate::util::{third, try_simplify_range};
42use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
43
44/// A hash table where the iteration order of the key-value pairs is independent
45/// of the hash values of the keys.
46///
47/// The interface is closely compatible with the standard
48/// [`HashMap`][std::collections::HashMap],
49/// but also has additional features.
50///
51/// # Order
52///
53/// The key-value pairs have a consistent order that is determined by
54/// the sequence of insertion and removal calls on the map. The order does
55/// not depend on the keys or the hash function at all.
56///
57/// All iterators traverse the map in *the order*.
58///
59/// The insertion order is preserved, with **notable exceptions** like the
60/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
61/// Methods such as [`.sort_by()`][Self::sort_by] of
62/// course result in a new order, depending on the sorting order.
63///
64/// # Indices
65///
66/// The key-value pairs are indexed in a compact range without holes in the
67/// range `0..self.len()`. For example, the method `.get_full` looks up the
68/// index for a key, and the method `.get_index` looks up the key-value pair by
69/// index.
70///
71/// # Examples
72///
73/// ```
74/// use indexmap::IndexMap;
75///
76/// // count the frequency of each letter in a sentence.
77/// let mut letters = IndexMap::new();
78/// for ch in "a short treatise on fungi".chars() {
79///     *letters.entry(ch).or_insert(0) += 1;
80/// }
81///
82/// assert_eq!(letters[&'s'], 2);
83/// assert_eq!(letters[&'t'], 3);
84/// assert_eq!(letters[&'u'], 1);
85/// assert_eq!(letters.get(&'y'), None);
86/// ```
87#[cfg(feature = "std")]
88pub struct IndexMap<K, V, S = RandomState> {
89    pub(crate) core: IndexMapCore<K, V>,
90    hash_builder: S,
91}
92#[cfg(not(feature = "std"))]
93pub struct IndexMap<K, V, S> {
94    pub(crate) core: IndexMapCore<K, V>,
95    hash_builder: S,
96}
97
98impl<K, V, S> Clone for IndexMap<K, V, S>
99where
100    K: Clone,
101    V: Clone,
102    S: Clone,
103{
104    fn clone(&self) -> Self {
105        IndexMap {
106            core: self.core.clone(),
107            hash_builder: self.hash_builder.clone(),
108        }
109    }
110
111    fn clone_from(&mut self, other: &Self) {
112        self.core.clone_from(&other.core);
113        self.hash_builder.clone_from(&other.hash_builder);
114    }
115}
116
117impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
118where
119    K: fmt::Debug,
120    V: fmt::Debug,
121{
122    #[cfg(not(feature = "test_debug"))]
123    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124        f.debug_map().entries(self.iter()).finish()
125    }
126
127    #[cfg(feature = "test_debug")]
128    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
129        // Let the inner `IndexMapCore` print all of its details
130        f.debug_struct("IndexMap")
131            .field("core", &self.core)
132            .finish()
133    }
134}
135
136#[cfg(feature = "std")]
137#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
138impl<K, V> IndexMap<K, V> {
139    /// Create a new map. (Does not allocate.)
140    #[inline]
141    pub fn new() -> Self {
142        Self::with_capacity(0)
143    }
144
145    /// Create a new map with capacity for `n` key-value pairs. (Does not
146    /// allocate if `n` is zero.)
147    ///
148    /// Computes in **O(n)** time.
149    #[inline]
150    pub fn with_capacity(n: usize) -> Self {
151        Self::with_capacity_and_hasher(n, <_>::default())
152    }
153}
154
155impl<K, V, S> IndexMap<K, V, S> {
156    /// Create a new map with capacity for `n` key-value pairs. (Does not
157    /// allocate if `n` is zero.)
158    ///
159    /// Computes in **O(n)** time.
160    #[inline]
161    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
162        if n == 0 {
163            Self::with_hasher(hash_builder)
164        } else {
165            IndexMap {
166                core: IndexMapCore::with_capacity(n),
167                hash_builder,
168            }
169        }
170    }
171
172    /// Create a new map with `hash_builder`.
173    ///
174    /// This function is `const`, so it
175    /// can be called in `static` contexts.
176    pub const fn with_hasher(hash_builder: S) -> Self {
177        IndexMap {
178            core: IndexMapCore::new(),
179            hash_builder,
180        }
181    }
182
183    #[inline]
184    pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
185        self.core.into_entries()
186    }
187
188    #[inline]
189    pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
190        self.core.as_entries()
191    }
192
193    #[inline]
194    pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
195        self.core.as_entries_mut()
196    }
197
198    pub(crate) fn with_entries<F>(&mut self, f: F)
199    where
200        F: FnOnce(&mut [Bucket<K, V>]),
201    {
202        self.core.with_entries(f);
203    }
204
205    /// Return the number of elements the map can hold without reallocating.
206    ///
207    /// This number is a lower bound; the map might be able to hold more,
208    /// but is guaranteed to be able to hold at least this many.
209    ///
210    /// Computes in **O(1)** time.
211    pub fn capacity(&self) -> usize {
212        self.core.capacity()
213    }
214
215    /// Return a reference to the map's `BuildHasher`.
216    pub fn hasher(&self) -> &S {
217        &self.hash_builder
218    }
219
220    /// Return the number of key-value pairs in the map.
221    ///
222    /// Computes in **O(1)** time.
223    #[inline]
224    pub fn len(&self) -> usize {
225        self.core.len()
226    }
227
228    /// Returns true if the map contains no elements.
229    ///
230    /// Computes in **O(1)** time.
231    #[inline]
232    pub fn is_empty(&self) -> bool {
233        self.len() == 0
234    }
235
236    /// Return an iterator over the key-value pairs of the map, in their order
237    pub fn iter(&self) -> Iter<'_, K, V> {
238        Iter::new(self.as_entries())
239    }
240
241    /// Return an iterator over the key-value pairs of the map, in their order
242    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
243        IterMut::new(self.as_entries_mut())
244    }
245
246    /// Return an iterator over the keys of the map, in their order
247    pub fn keys(&self) -> Keys<'_, K, V> {
248        Keys::new(self.as_entries())
249    }
250
251    /// Return an owning iterator over the keys of the map, in their order
252    pub fn into_keys(self) -> IntoKeys<K, V> {
253        IntoKeys::new(self.into_entries())
254    }
255
256    /// Return an iterator over the values of the map, in their order
257    pub fn values(&self) -> Values<'_, K, V> {
258        Values::new(self.as_entries())
259    }
260
261    /// Return an iterator over mutable references to the values of the map,
262    /// in their order
263    pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
264        ValuesMut::new(self.as_entries_mut())
265    }
266
267    /// Return an owning iterator over the values of the map, in their order
268    pub fn into_values(self) -> IntoValues<K, V> {
269        IntoValues::new(self.into_entries())
270    }
271
272    /// Remove all key-value pairs in the map, while preserving its capacity.
273    ///
274    /// Computes in **O(n)** time.
275    pub fn clear(&mut self) {
276        self.core.clear();
277    }
278
279    /// Shortens the map, keeping the first `len` elements and dropping the rest.
280    ///
281    /// If `len` is greater than the map's current length, this has no effect.
282    pub fn truncate(&mut self, len: usize) {
283        self.core.truncate(len);
284    }
285
286    /// Clears the `IndexMap` in the given index range, returning those
287    /// key-value pairs as a drain iterator.
288    ///
289    /// The range may be any type that implements [`RangeBounds<usize>`],
290    /// including all of the `std::ops::Range*` types, or even a tuple pair of
291    /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
292    /// like `map.drain(..)`.
293    ///
294    /// This shifts down all entries following the drained range to fill the
295    /// gap, and keeps the allocated memory for reuse.
296    ///
297    /// ***Panics*** if the starting point is greater than the end point or if
298    /// the end point is greater than the length of the map.
299    #[track_caller]
300    pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
301    where
302        R: RangeBounds<usize>,
303    {
304        Drain::new(self.core.drain(range))
305    }
306
307    /// Creates an iterator which uses a closure to determine if an element should be removed,
308    /// for all elements in the given range.
309    ///
310    /// If the closure returns true, the element is removed from the map and yielded.
311    /// If the closure returns false, or panics, the element remains in the map and will not be
312    /// yielded.
313    ///
314    /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
315    /// whether you choose to keep or remove it.
316    ///
317    /// The range may be any type that implements [`RangeBounds<usize>`],
318    /// including all of the `std::ops::Range*` types, or even a tuple pair of
319    /// `Bound` start and end values. To check the entire map, use `RangeFull`
320    /// like `map.extract_if(.., predicate)`.
321    ///
322    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
323    /// or the iteration short-circuits, then the remaining elements will be retained.
324    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
325    ///
326    /// [`retain`]: IndexMap::retain
327    ///
328    /// ***Panics*** if the starting point is greater than the end point or if
329    /// the end point is greater than the length of the map.
330    ///
331    /// # Examples
332    ///
333    /// Splitting a map into even and odd keys, reusing the original map:
334    ///
335    /// ```
336    /// use indexmap::IndexMap;
337    ///
338    /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
339    /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
340    ///
341    /// let evens = extracted.keys().copied().collect::<Vec<_>>();
342    /// let odds = map.keys().copied().collect::<Vec<_>>();
343    ///
344    /// assert_eq!(evens, vec![0, 2, 4, 6]);
345    /// assert_eq!(odds, vec![1, 3, 5, 7]);
346    /// ```
347    #[track_caller]
348    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
349    where
350        F: FnMut(&K, &mut V) -> bool,
351        R: RangeBounds<usize>,
352    {
353        ExtractIf::new(&mut self.core, range, pred)
354    }
355
356    /// Splits the collection into two at the given index.
357    ///
358    /// Returns a newly allocated map containing the elements in the range
359    /// `[at, len)`. After the call, the original map will be left containing
360    /// the elements `[0, at)` with its previous capacity unchanged.
361    ///
362    /// ***Panics*** if `at > len`.
363    #[track_caller]
364    pub fn split_off(&mut self, at: usize) -> Self
365    where
366        S: Clone,
367    {
368        Self {
369            core: self.core.split_off(at),
370            hash_builder: self.hash_builder.clone(),
371        }
372    }
373
374    /// Reserve capacity for `additional` more key-value pairs.
375    ///
376    /// Computes in **O(n)** time.
377    pub fn reserve(&mut self, additional: usize) {
378        self.core.reserve(additional);
379    }
380
381    /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
382    ///
383    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
384    /// frequent re-allocations. However, the underlying data structures may still have internal
385    /// capacity requirements, and the allocator itself may give more space than requested, so this
386    /// cannot be relied upon to be precisely minimal.
387    ///
388    /// Computes in **O(n)** time.
389    pub fn reserve_exact(&mut self, additional: usize) {
390        self.core.reserve_exact(additional);
391    }
392
393    /// Try to reserve capacity for `additional` more key-value pairs.
394    ///
395    /// Computes in **O(n)** time.
396    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
397        self.core.try_reserve(additional)
398    }
399
400    /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
401    ///
402    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
403    /// frequent re-allocations. However, the underlying data structures may still have internal
404    /// capacity requirements, and the allocator itself may give more space than requested, so this
405    /// cannot be relied upon to be precisely minimal.
406    ///
407    /// Computes in **O(n)** time.
408    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
409        self.core.try_reserve_exact(additional)
410    }
411
412    /// Shrink the capacity of the map as much as possible.
413    ///
414    /// Computes in **O(n)** time.
415    pub fn shrink_to_fit(&mut self) {
416        self.core.shrink_to(0);
417    }
418
419    /// Shrink the capacity of the map with a lower limit.
420    ///
421    /// Computes in **O(n)** time.
422    pub fn shrink_to(&mut self, min_capacity: usize) {
423        self.core.shrink_to(min_capacity);
424    }
425}
426
427impl<K, V, S> IndexMap<K, V, S>
428where
429    K: Hash + Eq,
430    S: BuildHasher,
431{
432    /// Insert a key-value pair in the map.
433    ///
434    /// If an equivalent key already exists in the map: the key remains and
435    /// retains in its place in the order, its corresponding value is updated
436    /// with `value`, and the older value is returned inside `Some(_)`.
437    ///
438    /// If no equivalent key existed in the map: the new key-value pair is
439    /// inserted, last in order, and `None` is returned.
440    ///
441    /// Computes in **O(1)** time (amortized average).
442    ///
443    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
444    /// or [`insert_full`][Self::insert_full] if you need to get the index of
445    /// the corresponding key-value pair.
446    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
447        self.insert_full(key, value).1
448    }
449
450    /// Insert a key-value pair in the map, and get their index.
451    ///
452    /// If an equivalent key already exists in the map: the key remains and
453    /// retains in its place in the order, its corresponding value is updated
454    /// with `value`, and the older value is returned inside `(index, Some(_))`.
455    ///
456    /// If no equivalent key existed in the map: the new key-value pair is
457    /// inserted, last in order, and `(index, None)` is returned.
458    ///
459    /// Computes in **O(1)** time (amortized average).
460    ///
461    /// See also [`entry`][Self::entry] if you want to insert *or* modify.
462    pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
463        let hash = self.hash(&key);
464        self.core.insert_full(hash, key, value)
465    }
466
467    /// Insert a key-value pair in the map at its ordered position among sorted keys.
468    ///
469    /// This is equivalent to finding the position with
470    /// [`binary_search_keys`][Self::binary_search_keys], then either updating
471    /// it or calling [`insert_before`][Self::insert_before] for a new key.
472    ///
473    /// If the sorted key is found in the map, its corresponding value is
474    /// updated with `value`, and the older value is returned inside
475    /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
476    /// the sorted position, and `(index, None)` is returned.
477    ///
478    /// If the existing keys are **not** already sorted, then the insertion
479    /// index is unspecified (like [`slice::binary_search`]), but the key-value
480    /// pair is moved to or inserted at that position regardless.
481    ///
482    /// Computes in **O(n)** time (average). Instead of repeating calls to
483    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
484    /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
485    /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
486    pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
487    where
488        K: Ord,
489    {
490        match self.binary_search_keys(&key) {
491            Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
492            Err(i) => self.insert_before(i, key, value),
493        }
494    }
495
496    /// Insert a key-value pair in the map at its ordered position among keys
497    /// sorted by `cmp`.
498    ///
499    /// This is equivalent to finding the position with
500    /// [`binary_search_by`][Self::binary_search_by], then calling
501    /// [`insert_before`][Self::insert_before] with the given key and value.
502    ///
503    /// If the existing keys are **not** already sorted, then the insertion
504    /// index is unspecified (like [`slice::binary_search`]), but the key-value
505    /// pair is moved to or inserted at that position regardless.
506    ///
507    /// Computes in **O(n)** time (average).
508    pub fn insert_sorted_by<F>(&mut self, key: K, value: V, mut cmp: F) -> (usize, Option<V>)
509    where
510        K: Ord,
511        F: FnMut(&K, &V, &K, &V) -> Ordering,
512    {
513        let (Ok(i) | Err(i)) = self.binary_search_by(|k, v| cmp(k, v, &key, &value));
514        self.insert_before(i, key, value)
515    }
516
517    /// Insert a key-value pair in the map at its ordered position
518    /// using a sort-key extraction function.
519    ///
520    /// This is equivalent to finding the position with
521    /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, then
522    /// calling [`insert_before`][Self::insert_before] with the given key and value.
523    ///
524    /// If the existing keys are **not** already sorted, then the insertion
525    /// index is unspecified (like [`slice::binary_search`]), but the key-value
526    /// pair is moved to or inserted at that position regardless.
527    ///
528    /// Computes in **O(n)** time (average).
529    pub fn insert_sorted_by_key<B, F>(
530        &mut self,
531        key: K,
532        value: V,
533        mut sort_key: F,
534    ) -> (usize, Option<V>)
535    where
536        B: Ord,
537        F: FnMut(&K, &V) -> B,
538    {
539        let search_key = sort_key(&key, &value);
540        let (Ok(i) | Err(i)) = self.binary_search_by_key(&search_key, sort_key);
541        self.insert_before(i, key, value)
542    }
543
544    /// Insert a key-value pair in the map before the entry at the given index, or at the end.
545    ///
546    /// If an equivalent key already exists in the map: the key remains and
547    /// is moved to the new position in the map, its corresponding value is updated
548    /// with `value`, and the older value is returned inside `Some(_)`. The returned index
549    /// will either be the given index or one less, depending on how the entry moved.
550    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
551    ///
552    /// If no equivalent key existed in the map: the new key-value pair is
553    /// inserted exactly at the given index, and `None` is returned.
554    ///
555    /// ***Panics*** if `index` is out of bounds.
556    /// Valid indices are `0..=map.len()` (inclusive).
557    ///
558    /// Computes in **O(n)** time (average).
559    ///
560    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
561    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
562    ///
563    /// # Examples
564    ///
565    /// ```
566    /// use indexmap::IndexMap;
567    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
568    ///
569    /// // The new key '*' goes exactly at the given index.
570    /// assert_eq!(map.get_index_of(&'*'), None);
571    /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
572    /// assert_eq!(map.get_index_of(&'*'), Some(10));
573    ///
574    /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
575    /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
576    /// assert_eq!(map.get_index_of(&'a'), Some(9));
577    /// assert_eq!(map.get_index_of(&'*'), Some(10));
578    ///
579    /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
580    /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
581    /// assert_eq!(map.get_index_of(&'z'), Some(10));
582    /// assert_eq!(map.get_index_of(&'*'), Some(11));
583    ///
584    /// // Moving or inserting before the endpoint is also valid.
585    /// assert_eq!(map.len(), 27);
586    /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
587    /// assert_eq!(map.get_index_of(&'*'), Some(26));
588    /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
589    /// assert_eq!(map.get_index_of(&'+'), Some(27));
590    /// assert_eq!(map.len(), 28);
591    /// ```
592    #[track_caller]
593    pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
594        let len = self.len();
595
596        assert!(
597            index <= len,
598            "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
599        );
600
601        match self.entry(key) {
602            Entry::Occupied(mut entry) => {
603                if index > entry.index() {
604                    // Some entries will shift down when this one moves up,
605                    // so "insert before index" becomes "move to index - 1",
606                    // keeping the entry at the original index unmoved.
607                    index -= 1;
608                }
609                let old = mem::replace(entry.get_mut(), value);
610                entry.move_index(index);
611                (index, Some(old))
612            }
613            Entry::Vacant(entry) => {
614                entry.shift_insert(index, value);
615                (index, None)
616            }
617        }
618    }
619
620    /// Insert a key-value pair in the map at the given index.
621    ///
622    /// If an equivalent key already exists in the map: the key remains and
623    /// is moved to the given index in the map, its corresponding value is updated
624    /// with `value`, and the older value is returned inside `Some(_)`.
625    /// Note that existing entries **cannot** be moved to `index == map.len()`!
626    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
627    ///
628    /// If no equivalent key existed in the map: the new key-value pair is
629    /// inserted at the given index, and `None` is returned.
630    ///
631    /// ***Panics*** if `index` is out of bounds.
632    /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
633    /// `0..=map.len()` (inclusive) when inserting a new key.
634    ///
635    /// Computes in **O(n)** time (average).
636    ///
637    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
638    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
639    ///
640    /// # Examples
641    ///
642    /// ```
643    /// use indexmap::IndexMap;
644    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
645    ///
646    /// // The new key '*' goes exactly at the given index.
647    /// assert_eq!(map.get_index_of(&'*'), None);
648    /// assert_eq!(map.shift_insert(10, '*', ()), None);
649    /// assert_eq!(map.get_index_of(&'*'), Some(10));
650    ///
651    /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
652    /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
653    /// assert_eq!(map.get_index_of(&'a'), Some(10));
654    /// assert_eq!(map.get_index_of(&'*'), Some(9));
655    ///
656    /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
657    /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
658    /// assert_eq!(map.get_index_of(&'z'), Some(9));
659    /// assert_eq!(map.get_index_of(&'*'), Some(10));
660    ///
661    /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
662    /// assert_eq!(map.len(), 27);
663    /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
664    /// assert_eq!(map.get_index_of(&'*'), Some(26));
665    /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
666    /// assert_eq!(map.get_index_of(&'+'), Some(27));
667    /// assert_eq!(map.len(), 28);
668    /// ```
669    ///
670    /// ```should_panic
671    /// use indexmap::IndexMap;
672    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
673    ///
674    /// // This is an invalid index for moving an existing key!
675    /// map.shift_insert(map.len(), 'a', ());
676    /// ```
677    #[track_caller]
678    pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
679        let len = self.len();
680        match self.entry(key) {
681            Entry::Occupied(mut entry) => {
682                assert!(
683                    index < len,
684                    "index out of bounds: the len is {len} but the index is {index}"
685                );
686
687                let old = mem::replace(entry.get_mut(), value);
688                entry.move_index(index);
689                Some(old)
690            }
691            Entry::Vacant(entry) => {
692                assert!(
693                    index <= len,
694                    "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
695                );
696
697                entry.shift_insert(index, value);
698                None
699            }
700        }
701    }
702
703    /// Replaces the key at the given index. The new key does not need to be
704    /// equivalent to the one it is replacing, but it must be unique to the rest
705    /// of the map.
706    ///
707    /// Returns `Ok(old_key)` if successful, or `Err((other_index, key))` if an
708    /// equivalent key already exists at a different index. The map will be
709    /// unchanged in the error case.
710    ///
711    /// Direct indexing can be used to change the corresponding value: simply
712    /// `map[index] = value`, or `mem::replace(&mut map[index], value)` to
713    /// retrieve the old value as well.
714    ///
715    /// ***Panics*** if `index` is out of bounds.
716    ///
717    /// Computes in **O(1)** time (average).
718    #[track_caller]
719    pub fn replace_index(&mut self, index: usize, key: K) -> Result<K, (usize, K)> {
720        // If there's a direct match, we don't even need to hash it.
721        let entry = &mut self.as_entries_mut()[index];
722        if key == entry.key {
723            return Ok(mem::replace(&mut entry.key, key));
724        }
725
726        let hash = self.hash(&key);
727        if let Some(i) = self.core.get_index_of(hash, &key) {
728            debug_assert_ne!(i, index);
729            return Err((i, key));
730        }
731        Ok(self.core.replace_index_unique(index, hash, key))
732    }
733
734    /// Get the given key's corresponding entry in the map for insertion and/or
735    /// in-place manipulation.
736    ///
737    /// Computes in **O(1)** time (amortized average).
738    pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
739        let hash = self.hash(&key);
740        self.core.entry(hash, key)
741    }
742
743    /// Creates a splicing iterator that replaces the specified range in the map
744    /// with the given `replace_with` key-value iterator and yields the removed
745    /// items. `replace_with` does not need to be the same length as `range`.
746    ///
747    /// The `range` is removed even if the iterator is not consumed until the
748    /// end. It is unspecified how many elements are removed from the map if the
749    /// `Splice` value is leaked.
750    ///
751    /// The input iterator `replace_with` is only consumed when the `Splice`
752    /// value is dropped. If a key from the iterator matches an existing entry
753    /// in the map (outside of `range`), then the value will be updated in that
754    /// position. Otherwise, the new key-value pair will be inserted in the
755    /// replaced `range`.
756    ///
757    /// ***Panics*** if the starting point is greater than the end point or if
758    /// the end point is greater than the length of the map.
759    ///
760    /// # Examples
761    ///
762    /// ```
763    /// use indexmap::IndexMap;
764    ///
765    /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
766    /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
767    /// let removed: Vec<_> = map.splice(2..4, new).collect();
768    ///
769    /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
770    /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
771    /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
772    /// ```
773    #[track_caller]
774    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
775    where
776        R: RangeBounds<usize>,
777        I: IntoIterator<Item = (K, V)>,
778    {
779        Splice::new(self, range, replace_with.into_iter())
780    }
781
782    /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
783    ///
784    /// This is equivalent to calling [`insert`][Self::insert] for each
785    /// key-value pair from `other` in order, which means that for keys that
786    /// already exist in `self`, their value is updated in the current position.
787    ///
788    /// # Examples
789    ///
790    /// ```
791    /// use indexmap::IndexMap;
792    ///
793    /// // Note: Key (3) is present in both maps.
794    /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
795    /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
796    /// let old_capacity = b.capacity();
797    ///
798    /// a.append(&mut b);
799    ///
800    /// assert_eq!(a.len(), 5);
801    /// assert_eq!(b.len(), 0);
802    /// assert_eq!(b.capacity(), old_capacity);
803    ///
804    /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
805    /// assert_eq!(a[&3], "d"); // "c" was overwritten.
806    /// ```
807    pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
808        self.extend(other.drain(..));
809    }
810}
811
812impl<K, V, S> IndexMap<K, V, S>
813where
814    S: BuildHasher,
815{
816    pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
817        let mut h = self.hash_builder.build_hasher();
818        key.hash(&mut h);
819        HashValue(h.finish() as usize)
820    }
821
822    /// Return `true` if an equivalent to `key` exists in the map.
823    ///
824    /// Computes in **O(1)** time (average).
825    pub fn contains_key<Q>(&self, key: &Q) -> bool
826    where
827        Q: ?Sized + Hash + Equivalent<K>,
828    {
829        self.get_index_of(key).is_some()
830    }
831
832    /// Return a reference to the value stored for `key`, if it is present,
833    /// else `None`.
834    ///
835    /// Computes in **O(1)** time (average).
836    pub fn get<Q>(&self, key: &Q) -> Option<&V>
837    where
838        Q: ?Sized + Hash + Equivalent<K>,
839    {
840        if let Some(i) = self.get_index_of(key) {
841            let entry = &self.as_entries()[i];
842            Some(&entry.value)
843        } else {
844            None
845        }
846    }
847
848    /// Return references to the key-value pair stored for `key`,
849    /// if it is present, else `None`.
850    ///
851    /// Computes in **O(1)** time (average).
852    pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
853    where
854        Q: ?Sized + Hash + Equivalent<K>,
855    {
856        if let Some(i) = self.get_index_of(key) {
857            let entry = &self.as_entries()[i];
858            Some((&entry.key, &entry.value))
859        } else {
860            None
861        }
862    }
863
864    /// Return item index, key and value
865    pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
866    where
867        Q: ?Sized + Hash + Equivalent<K>,
868    {
869        if let Some(i) = self.get_index_of(key) {
870            let entry = &self.as_entries()[i];
871            Some((i, &entry.key, &entry.value))
872        } else {
873            None
874        }
875    }
876
877    /// Return item index, if it exists in the map
878    ///
879    /// Computes in **O(1)** time (average).
880    pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
881    where
882        Q: ?Sized + Hash + Equivalent<K>,
883    {
884        match self.as_entries() {
885            [] => None,
886            [x] => key.equivalent(&x.key).then_some(0),
887            _ => {
888                let hash = self.hash(key);
889                self.core.get_index_of(hash, key)
890            }
891        }
892    }
893
894    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
895    where
896        Q: ?Sized + Hash + Equivalent<K>,
897    {
898        if let Some(i) = self.get_index_of(key) {
899            let entry = &mut self.as_entries_mut()[i];
900            Some(&mut entry.value)
901        } else {
902            None
903        }
904    }
905
906    pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
907    where
908        Q: ?Sized + Hash + Equivalent<K>,
909    {
910        if let Some(i) = self.get_index_of(key) {
911            let entry = &mut self.as_entries_mut()[i];
912            Some((i, &entry.key, &mut entry.value))
913        } else {
914            None
915        }
916    }
917
918    /// Return the values for `N` keys. If any key is duplicated, this function will panic.
919    ///
920    /// # Examples
921    ///
922    /// ```
923    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
924    /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
925    /// ```
926    pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
927    where
928        Q: ?Sized + Hash + Equivalent<K>,
929    {
930        let indices = keys.map(|key| self.get_index_of(key));
931        match self.as_mut_slice().get_disjoint_opt_mut(indices) {
932            Err(GetDisjointMutError::IndexOutOfBounds) => {
933                unreachable!(
934                    "Internal error: indices should never be OOB as we got them from get_index_of"
935                );
936            }
937            Err(GetDisjointMutError::OverlappingIndices) => {
938                panic!("duplicate keys found");
939            }
940            Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
941        }
942    }
943
944    /// Remove the key-value pair equivalent to `key` and return
945    /// its value.
946    ///
947    /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
948    /// entry's position with the last element, and it is deprecated in favor of calling that
949    /// explicitly. If you need to preserve the relative order of the keys in the map, use
950    /// [`.shift_remove(key)`][Self::shift_remove] instead.
951    #[deprecated(note = "`remove` disrupts the map order -- \
952        use `swap_remove` or `shift_remove` for explicit behavior.")]
953    pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
954    where
955        Q: ?Sized + Hash + Equivalent<K>,
956    {
957        self.swap_remove(key)
958    }
959
960    /// Remove and return the key-value pair equivalent to `key`.
961    ///
962    /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
963    /// replacing this entry's position with the last element, and it is deprecated in favor of
964    /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
965    /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
966    #[deprecated(note = "`remove_entry` disrupts the map order -- \
967        use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
968    pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
969    where
970        Q: ?Sized + Hash + Equivalent<K>,
971    {
972        self.swap_remove_entry(key)
973    }
974
975    /// Remove the key-value pair equivalent to `key` and return
976    /// its value.
977    ///
978    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
979    /// last element of the map and popping it off. **This perturbs
980    /// the position of what used to be the last element!**
981    ///
982    /// Return `None` if `key` is not in map.
983    ///
984    /// Computes in **O(1)** time (average).
985    pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
986    where
987        Q: ?Sized + Hash + Equivalent<K>,
988    {
989        self.swap_remove_full(key).map(third)
990    }
991
992    /// Remove and return the key-value pair equivalent to `key`.
993    ///
994    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
995    /// last element of the map and popping it off. **This perturbs
996    /// the position of what used to be the last element!**
997    ///
998    /// Return `None` if `key` is not in map.
999    ///
1000    /// Computes in **O(1)** time (average).
1001    pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1002    where
1003        Q: ?Sized + Hash + Equivalent<K>,
1004    {
1005        match self.swap_remove_full(key) {
1006            Some((_, key, value)) => Some((key, value)),
1007            None => None,
1008        }
1009    }
1010
1011    /// Remove the key-value pair equivalent to `key` and return it and
1012    /// the index it had.
1013    ///
1014    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1015    /// last element of the map and popping it off. **This perturbs
1016    /// the position of what used to be the last element!**
1017    ///
1018    /// Return `None` if `key` is not in map.
1019    ///
1020    /// Computes in **O(1)** time (average).
1021    pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1022    where
1023        Q: ?Sized + Hash + Equivalent<K>,
1024    {
1025        match self.as_entries() {
1026            [x] if key.equivalent(&x.key) => {
1027                let (k, v) = self.core.pop()?;
1028                Some((0, k, v))
1029            }
1030            [_] | [] => None,
1031            _ => {
1032                let hash = self.hash(key);
1033                self.core.swap_remove_full(hash, key)
1034            }
1035        }
1036    }
1037
1038    /// Remove the key-value pair equivalent to `key` and return
1039    /// its value.
1040    ///
1041    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1042    /// elements that follow it, preserving their relative order.
1043    /// **This perturbs the index of all of those elements!**
1044    ///
1045    /// Return `None` if `key` is not in map.
1046    ///
1047    /// Computes in **O(n)** time (average).
1048    pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
1049    where
1050        Q: ?Sized + Hash + Equivalent<K>,
1051    {
1052        self.shift_remove_full(key).map(third)
1053    }
1054
1055    /// Remove and return the key-value pair equivalent to `key`.
1056    ///
1057    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1058    /// elements that follow it, preserving their relative order.
1059    /// **This perturbs the index of all of those elements!**
1060    ///
1061    /// Return `None` if `key` is not in map.
1062    ///
1063    /// Computes in **O(n)** time (average).
1064    pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1065    where
1066        Q: ?Sized + Hash + Equivalent<K>,
1067    {
1068        match self.shift_remove_full(key) {
1069            Some((_, key, value)) => Some((key, value)),
1070            None => None,
1071        }
1072    }
1073
1074    /// Remove the key-value pair equivalent to `key` and return it and
1075    /// the index it had.
1076    ///
1077    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1078    /// elements that follow it, preserving their relative order.
1079    /// **This perturbs the index of all of those elements!**
1080    ///
1081    /// Return `None` if `key` is not in map.
1082    ///
1083    /// Computes in **O(n)** time (average).
1084    pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1085    where
1086        Q: ?Sized + Hash + Equivalent<K>,
1087    {
1088        match self.as_entries() {
1089            [x] if key.equivalent(&x.key) => {
1090                let (k, v) = self.core.pop()?;
1091                Some((0, k, v))
1092            }
1093            [_] | [] => None,
1094            _ => {
1095                let hash = self.hash(key);
1096                self.core.shift_remove_full(hash, key)
1097            }
1098        }
1099    }
1100}
1101
1102impl<K, V, S> IndexMap<K, V, S> {
1103    /// Remove the last key-value pair
1104    ///
1105    /// This preserves the order of the remaining elements.
1106    ///
1107    /// Computes in **O(1)** time (average).
1108    #[doc(alias = "pop_last")] // like `BTreeMap`
1109    pub fn pop(&mut self) -> Option<(K, V)> {
1110        self.core.pop()
1111    }
1112
1113    /// Scan through each key-value pair in the map and keep those where the
1114    /// closure `keep` returns `true`.
1115    ///
1116    /// The elements are visited in order, and remaining elements keep their
1117    /// order.
1118    ///
1119    /// Computes in **O(n)** time (average).
1120    pub fn retain<F>(&mut self, mut keep: F)
1121    where
1122        F: FnMut(&K, &mut V) -> bool,
1123    {
1124        self.core.retain_in_order(move |k, v| keep(k, v));
1125    }
1126
1127    /// Sort the map's key-value pairs by the default ordering of the keys.
1128    ///
1129    /// This is a stable sort -- but equivalent keys should not normally coexist in
1130    /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1131    /// because it is generally faster and doesn't allocate auxiliary memory.
1132    ///
1133    /// See [`sort_by`](Self::sort_by) for details.
1134    pub fn sort_keys(&mut self)
1135    where
1136        K: Ord,
1137    {
1138        self.with_entries(move |entries| {
1139            entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1140        });
1141    }
1142
1143    /// Sort the map's key-value pairs in place using the comparison
1144    /// function `cmp`.
1145    ///
1146    /// The comparison function receives two key and value pairs to compare (you
1147    /// can sort by keys or values or their combination as needed).
1148    ///
1149    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1150    /// the length of the map and *c* the capacity. The sort is stable.
1151    pub fn sort_by<F>(&mut self, mut cmp: F)
1152    where
1153        F: FnMut(&K, &V, &K, &V) -> Ordering,
1154    {
1155        self.with_entries(move |entries| {
1156            entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1157        });
1158    }
1159
1160    /// Sort the key-value pairs of the map and return a by-value iterator of
1161    /// the key-value pairs with the result.
1162    ///
1163    /// The sort is stable.
1164    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1165    where
1166        F: FnMut(&K, &V, &K, &V) -> Ordering,
1167    {
1168        let mut entries = self.into_entries();
1169        entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1170        IntoIter::new(entries)
1171    }
1172
1173    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1174    ///
1175    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1176    /// the length of the map and *c* the capacity. The sort is stable.
1177    pub fn sort_by_key<T, F>(&mut self, mut sort_key: F)
1178    where
1179        T: Ord,
1180        F: FnMut(&K, &V) -> T,
1181    {
1182        self.with_entries(move |entries| {
1183            entries.sort_by_key(move |a| sort_key(&a.key, &a.value));
1184        });
1185    }
1186
1187    /// Sort the map's key-value pairs by the default ordering of the keys, but
1188    /// may not preserve the order of equal elements.
1189    ///
1190    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1191    pub fn sort_unstable_keys(&mut self)
1192    where
1193        K: Ord,
1194    {
1195        self.with_entries(move |entries| {
1196            entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1197        });
1198    }
1199
1200    /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1201    /// may not preserve the order of equal elements.
1202    ///
1203    /// The comparison function receives two key and value pairs to compare (you
1204    /// can sort by keys or values or their combination as needed).
1205    ///
1206    /// Computes in **O(n log n + c)** time where *n* is
1207    /// the length of the map and *c* is the capacity. The sort is unstable.
1208    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1209    where
1210        F: FnMut(&K, &V, &K, &V) -> Ordering,
1211    {
1212        self.with_entries(move |entries| {
1213            entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1214        });
1215    }
1216
1217    /// Sort the key-value pairs of the map and return a by-value iterator of
1218    /// the key-value pairs with the result.
1219    ///
1220    /// The sort is unstable.
1221    #[inline]
1222    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1223    where
1224        F: FnMut(&K, &V, &K, &V) -> Ordering,
1225    {
1226        let mut entries = self.into_entries();
1227        entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1228        IntoIter::new(entries)
1229    }
1230
1231    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1232    ///
1233    /// Computes in **O(n log n + c)** time where *n* is
1234    /// the length of the map and *c* is the capacity. The sort is unstable.
1235    pub fn sort_unstable_by_key<T, F>(&mut self, mut sort_key: F)
1236    where
1237        T: Ord,
1238        F: FnMut(&K, &V) -> T,
1239    {
1240        self.with_entries(move |entries| {
1241            entries.sort_unstable_by_key(move |a| sort_key(&a.key, &a.value));
1242        });
1243    }
1244
1245    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1246    ///
1247    /// During sorting, the function is called at most once per entry, by using temporary storage
1248    /// to remember the results of its evaluation. The order of calls to the function is
1249    /// unspecified and may change between versions of `indexmap` or the standard library.
1250    ///
1251    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1252    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1253    pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1254    where
1255        T: Ord,
1256        F: FnMut(&K, &V) -> T,
1257    {
1258        self.with_entries(move |entries| {
1259            entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1260        });
1261    }
1262
1263    /// Search over a sorted map for a key.
1264    ///
1265    /// Returns the position where that key is present, or the position where it can be inserted to
1266    /// maintain the sort. See [`slice::binary_search`] for more details.
1267    ///
1268    /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1269    /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1270    pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1271    where
1272        K: Ord,
1273    {
1274        self.as_slice().binary_search_keys(x)
1275    }
1276
1277    /// Search over a sorted map with a comparator function.
1278    ///
1279    /// Returns the position where that value is present, or the position where it can be inserted
1280    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1281    ///
1282    /// Computes in **O(log(n))** time.
1283    #[inline]
1284    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1285    where
1286        F: FnMut(&'a K, &'a V) -> Ordering,
1287    {
1288        self.as_slice().binary_search_by(f)
1289    }
1290
1291    /// Search over a sorted map with an extraction function.
1292    ///
1293    /// Returns the position where that value is present, or the position where it can be inserted
1294    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1295    ///
1296    /// Computes in **O(log(n))** time.
1297    #[inline]
1298    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1299    where
1300        F: FnMut(&'a K, &'a V) -> B,
1301        B: Ord,
1302    {
1303        self.as_slice().binary_search_by_key(b, f)
1304    }
1305
1306    /// Checks if the keys of this map are sorted.
1307    #[inline]
1308    pub fn is_sorted(&self) -> bool
1309    where
1310        K: PartialOrd,
1311    {
1312        self.as_slice().is_sorted()
1313    }
1314
1315    /// Checks if this map is sorted using the given comparator function.
1316    #[inline]
1317    pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1318    where
1319        F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool,
1320    {
1321        self.as_slice().is_sorted_by(cmp)
1322    }
1323
1324    /// Checks if this map is sorted using the given sort-key function.
1325    #[inline]
1326    pub fn is_sorted_by_key<'a, F, T>(&'a self, sort_key: F) -> bool
1327    where
1328        F: FnMut(&'a K, &'a V) -> T,
1329        T: PartialOrd,
1330    {
1331        self.as_slice().is_sorted_by_key(sort_key)
1332    }
1333
1334    /// Returns the index of the partition point of a sorted map according to the given predicate
1335    /// (the index of the first element of the second partition).
1336    ///
1337    /// See [`slice::partition_point`] for more details.
1338    ///
1339    /// Computes in **O(log(n))** time.
1340    #[must_use]
1341    pub fn partition_point<P>(&self, pred: P) -> usize
1342    where
1343        P: FnMut(&K, &V) -> bool,
1344    {
1345        self.as_slice().partition_point(pred)
1346    }
1347
1348    /// Reverses the order of the map's key-value pairs in place.
1349    ///
1350    /// Computes in **O(n)** time and **O(1)** space.
1351    pub fn reverse(&mut self) {
1352        self.core.reverse()
1353    }
1354
1355    /// Returns a slice of all the key-value pairs in the map.
1356    ///
1357    /// Computes in **O(1)** time.
1358    pub fn as_slice(&self) -> &Slice<K, V> {
1359        Slice::from_slice(self.as_entries())
1360    }
1361
1362    /// Returns a mutable slice of all the key-value pairs in the map.
1363    ///
1364    /// Computes in **O(1)** time.
1365    pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1366        Slice::from_mut_slice(self.as_entries_mut())
1367    }
1368
1369    /// Converts into a boxed slice of all the key-value pairs in the map.
1370    ///
1371    /// Note that this will drop the inner hash table and any excess capacity.
1372    pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1373        Slice::from_boxed(self.into_entries().into_boxed_slice())
1374    }
1375
1376    /// Get a key-value pair by index
1377    ///
1378    /// Valid indices are `0 <= index < self.len()`.
1379    ///
1380    /// Computes in **O(1)** time.
1381    pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1382        self.as_entries().get(index).map(Bucket::refs)
1383    }
1384
1385    /// Get a key-value pair by index
1386    ///
1387    /// Valid indices are `0 <= index < self.len()`.
1388    ///
1389    /// Computes in **O(1)** time.
1390    pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1391        self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1392    }
1393
1394    /// Get an entry in the map by index for in-place manipulation.
1395    ///
1396    /// Valid indices are `0 <= index < self.len()`.
1397    ///
1398    /// Computes in **O(1)** time.
1399    pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1400        if index >= self.len() {
1401            return None;
1402        }
1403        Some(IndexedEntry::new(&mut self.core, index))
1404    }
1405
1406    /// Get an array of `N` key-value pairs by `N` indices
1407    ///
1408    /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1409    ///
1410    /// # Examples
1411    ///
1412    /// ```
1413    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1414    /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1415    /// ```
1416    pub fn get_disjoint_indices_mut<const N: usize>(
1417        &mut self,
1418        indices: [usize; N],
1419    ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1420        self.as_mut_slice().get_disjoint_mut(indices)
1421    }
1422
1423    /// Returns a slice of key-value pairs in the given range of indices.
1424    ///
1425    /// Valid indices are `0 <= index < self.len()`.
1426    ///
1427    /// Computes in **O(1)** time.
1428    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1429        let entries = self.as_entries();
1430        let range = try_simplify_range(range, entries.len())?;
1431        entries.get(range).map(Slice::from_slice)
1432    }
1433
1434    /// Returns a mutable slice of key-value pairs in the given range of indices.
1435    ///
1436    /// Valid indices are `0 <= index < self.len()`.
1437    ///
1438    /// Computes in **O(1)** time.
1439    pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1440        let entries = self.as_entries_mut();
1441        let range = try_simplify_range(range, entries.len())?;
1442        entries.get_mut(range).map(Slice::from_mut_slice)
1443    }
1444
1445    /// Get the first key-value pair
1446    ///
1447    /// Computes in **O(1)** time.
1448    #[doc(alias = "first_key_value")] // like `BTreeMap`
1449    pub fn first(&self) -> Option<(&K, &V)> {
1450        self.as_entries().first().map(Bucket::refs)
1451    }
1452
1453    /// Get the first key-value pair, with mutable access to the value
1454    ///
1455    /// Computes in **O(1)** time.
1456    pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1457        self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1458    }
1459
1460    /// Get the first entry in the map for in-place manipulation.
1461    ///
1462    /// Computes in **O(1)** time.
1463    pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1464        self.get_index_entry(0)
1465    }
1466
1467    /// Get the last key-value pair
1468    ///
1469    /// Computes in **O(1)** time.
1470    #[doc(alias = "last_key_value")] // like `BTreeMap`
1471    pub fn last(&self) -> Option<(&K, &V)> {
1472        self.as_entries().last().map(Bucket::refs)
1473    }
1474
1475    /// Get the last key-value pair, with mutable access to the value
1476    ///
1477    /// Computes in **O(1)** time.
1478    pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1479        self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1480    }
1481
1482    /// Get the last entry in the map for in-place manipulation.
1483    ///
1484    /// Computes in **O(1)** time.
1485    pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1486        self.get_index_entry(self.len().checked_sub(1)?)
1487    }
1488
1489    /// Remove the key-value pair by index
1490    ///
1491    /// Valid indices are `0 <= index < self.len()`.
1492    ///
1493    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1494    /// last element of the map and popping it off. **This perturbs
1495    /// the position of what used to be the last element!**
1496    ///
1497    /// Computes in **O(1)** time (average).
1498    pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1499        self.core.swap_remove_index(index)
1500    }
1501
1502    /// Remove the key-value pair by index
1503    ///
1504    /// Valid indices are `0 <= index < self.len()`.
1505    ///
1506    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1507    /// elements that follow it, preserving their relative order.
1508    /// **This perturbs the index of all of those elements!**
1509    ///
1510    /// Computes in **O(n)** time (average).
1511    pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1512        self.core.shift_remove_index(index)
1513    }
1514
1515    /// Moves the position of a key-value pair from one index to another
1516    /// by shifting all other pairs in-between.
1517    ///
1518    /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1519    /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1520    ///
1521    /// ***Panics*** if `from` or `to` are out of bounds.
1522    ///
1523    /// Computes in **O(n)** time (average).
1524    #[track_caller]
1525    pub fn move_index(&mut self, from: usize, to: usize) {
1526        self.core.move_index(from, to)
1527    }
1528
1529    /// Swaps the position of two key-value pairs in the map.
1530    ///
1531    /// ***Panics*** if `a` or `b` are out of bounds.
1532    ///
1533    /// Computes in **O(1)** time (average).
1534    #[track_caller]
1535    pub fn swap_indices(&mut self, a: usize, b: usize) {
1536        self.core.swap_indices(a, b)
1537    }
1538}
1539
1540/// Access [`IndexMap`] values corresponding to a key.
1541///
1542/// # Examples
1543///
1544/// ```
1545/// use indexmap::IndexMap;
1546///
1547/// let mut map = IndexMap::new();
1548/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1549///     map.insert(word.to_lowercase(), word.to_uppercase());
1550/// }
1551/// assert_eq!(map["lorem"], "LOREM");
1552/// assert_eq!(map["ipsum"], "IPSUM");
1553/// ```
1554///
1555/// ```should_panic
1556/// use indexmap::IndexMap;
1557///
1558/// let mut map = IndexMap::new();
1559/// map.insert("foo", 1);
1560/// println!("{:?}", map["bar"]); // panics!
1561/// ```
1562impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1563where
1564    Q: Hash + Equivalent<K>,
1565    S: BuildHasher,
1566{
1567    type Output = V;
1568
1569    /// Returns a reference to the value corresponding to the supplied `key`.
1570    ///
1571    /// ***Panics*** if `key` is not present in the map.
1572    fn index(&self, key: &Q) -> &V {
1573        self.get(key).expect("no entry found for key")
1574    }
1575}
1576
1577/// Access [`IndexMap`] values corresponding to a key.
1578///
1579/// Mutable indexing allows changing / updating values of key-value
1580/// pairs that are already present.
1581///
1582/// You can **not** insert new pairs with index syntax, use `.insert()`.
1583///
1584/// # Examples
1585///
1586/// ```
1587/// use indexmap::IndexMap;
1588///
1589/// let mut map = IndexMap::new();
1590/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1591///     map.insert(word.to_lowercase(), word.to_string());
1592/// }
1593/// let lorem = &mut map["lorem"];
1594/// assert_eq!(lorem, "Lorem");
1595/// lorem.retain(char::is_lowercase);
1596/// assert_eq!(map["lorem"], "orem");
1597/// ```
1598///
1599/// ```should_panic
1600/// use indexmap::IndexMap;
1601///
1602/// let mut map = IndexMap::new();
1603/// map.insert("foo", 1);
1604/// map["bar"] = 1; // panics!
1605/// ```
1606impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1607where
1608    Q: Hash + Equivalent<K>,
1609    S: BuildHasher,
1610{
1611    /// Returns a mutable reference to the value corresponding to the supplied `key`.
1612    ///
1613    /// ***Panics*** if `key` is not present in the map.
1614    fn index_mut(&mut self, key: &Q) -> &mut V {
1615        self.get_mut(key).expect("no entry found for key")
1616    }
1617}
1618
1619/// Access [`IndexMap`] values at indexed positions.
1620///
1621/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1622///
1623/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1624///
1625/// # Examples
1626///
1627/// ```
1628/// use indexmap::IndexMap;
1629///
1630/// let mut map = IndexMap::new();
1631/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1632///     map.insert(word.to_lowercase(), word.to_uppercase());
1633/// }
1634/// assert_eq!(map[0], "LOREM");
1635/// assert_eq!(map[1], "IPSUM");
1636/// map.reverse();
1637/// assert_eq!(map[0], "AMET");
1638/// assert_eq!(map[1], "SIT");
1639/// map.sort_keys();
1640/// assert_eq!(map[0], "AMET");
1641/// assert_eq!(map[1], "DOLOR");
1642/// ```
1643///
1644/// ```should_panic
1645/// use indexmap::IndexMap;
1646///
1647/// let mut map = IndexMap::new();
1648/// map.insert("foo", 1);
1649/// println!("{:?}", map[10]); // panics!
1650/// ```
1651impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1652    type Output = V;
1653
1654    /// Returns a reference to the value at the supplied `index`.
1655    ///
1656    /// ***Panics*** if `index` is out of bounds.
1657    fn index(&self, index: usize) -> &V {
1658        if let Some((_, value)) = self.get_index(index) {
1659            value
1660        } else {
1661            panic!(
1662                "index out of bounds: the len is {len} but the index is {index}",
1663                len = self.len()
1664            );
1665        }
1666    }
1667}
1668
1669/// Access [`IndexMap`] values at indexed positions.
1670///
1671/// Mutable indexing allows changing / updating indexed values
1672/// that are already present.
1673///
1674/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1675///
1676/// # Examples
1677///
1678/// ```
1679/// use indexmap::IndexMap;
1680///
1681/// let mut map = IndexMap::new();
1682/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1683///     map.insert(word.to_lowercase(), word.to_string());
1684/// }
1685/// let lorem = &mut map[0];
1686/// assert_eq!(lorem, "Lorem");
1687/// lorem.retain(char::is_lowercase);
1688/// assert_eq!(map["lorem"], "orem");
1689/// ```
1690///
1691/// ```should_panic
1692/// use indexmap::IndexMap;
1693///
1694/// let mut map = IndexMap::new();
1695/// map.insert("foo", 1);
1696/// map[10] = 1; // panics!
1697/// ```
1698impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1699    /// Returns a mutable reference to the value at the supplied `index`.
1700    ///
1701    /// ***Panics*** if `index` is out of bounds.
1702    fn index_mut(&mut self, index: usize) -> &mut V {
1703        let len: usize = self.len();
1704
1705        if let Some((_, value)) = self.get_index_mut(index) {
1706            value
1707        } else {
1708            panic!("index out of bounds: the len is {len} but the index is {index}");
1709        }
1710    }
1711}
1712
1713impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1714where
1715    K: Hash + Eq,
1716    S: BuildHasher + Default,
1717{
1718    /// Create an `IndexMap` from the sequence of key-value pairs in the
1719    /// iterable.
1720    ///
1721    /// `from_iter` uses the same logic as `extend`. See
1722    /// [`extend`][IndexMap::extend] for more details.
1723    fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1724        let iter = iterable.into_iter();
1725        let (low, _) = iter.size_hint();
1726        let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1727        map.extend(iter);
1728        map
1729    }
1730}
1731
1732#[cfg(feature = "std")]
1733#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1734impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1735where
1736    K: Hash + Eq,
1737{
1738    /// # Examples
1739    ///
1740    /// ```
1741    /// use indexmap::IndexMap;
1742    ///
1743    /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1744    /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1745    /// assert_eq!(map1, map2);
1746    /// ```
1747    fn from(arr: [(K, V); N]) -> Self {
1748        Self::from_iter(arr)
1749    }
1750}
1751
1752impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1753where
1754    K: Hash + Eq,
1755    S: BuildHasher,
1756{
1757    /// Extend the map with all key-value pairs in the iterable.
1758    ///
1759    /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1760    /// them in order, which means that for keys that already existed
1761    /// in the map, their value is updated but it keeps the existing order.
1762    ///
1763    /// New keys are inserted in the order they appear in the sequence. If
1764    /// equivalents of a key occur more than once, the last corresponding value
1765    /// prevails.
1766    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1767        // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1768        // Keys may be already present or show multiple times in the iterator.
1769        // Reserve the entire hint lower bound if the map is empty.
1770        // Otherwise reserve half the hint (rounded up), so the map
1771        // will only resize twice in the worst case.
1772        let iter = iterable.into_iter();
1773        let reserve = if self.is_empty() {
1774            iter.size_hint().0
1775        } else {
1776            (iter.size_hint().0 + 1) / 2
1777        };
1778        self.reserve(reserve);
1779        iter.for_each(move |(k, v)| {
1780            self.insert(k, v);
1781        });
1782    }
1783}
1784
1785impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1786where
1787    K: Hash + Eq + Copy,
1788    V: Copy,
1789    S: BuildHasher,
1790{
1791    /// Extend the map with all key-value pairs in the iterable.
1792    ///
1793    /// See the first extend method for more details.
1794    fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1795        self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1796    }
1797}
1798
1799impl<K, V, S> Default for IndexMap<K, V, S>
1800where
1801    S: Default,
1802{
1803    /// Return an empty [`IndexMap`]
1804    fn default() -> Self {
1805        Self::with_capacity_and_hasher(0, S::default())
1806    }
1807}
1808
1809impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1810where
1811    K: Hash + Eq,
1812    V1: PartialEq<V2>,
1813    S1: BuildHasher,
1814    S2: BuildHasher,
1815{
1816    fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1817        if self.len() != other.len() {
1818            return false;
1819        }
1820
1821        self.iter()
1822            .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1823    }
1824}
1825
1826impl<K, V, S> Eq for IndexMap<K, V, S>
1827where
1828    K: Eq + Hash,
1829    V: Eq,
1830    S: BuildHasher,
1831{
1832}