1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//! Coordinates idling workers

use crate::loom::sync::atomic::AtomicUsize;
use crate::runtime::scheduler::multi_thread::Shared;

use std::fmt;
use std::sync::atomic::Ordering::{self, SeqCst};

pub(super) struct Idle {
    /// Tracks both the number of searching workers and the number of unparked
    /// workers.
    ///
    /// Used as a fast-path to avoid acquiring the lock when needed.
    state: AtomicUsize,

    /// Total number of workers.
    num_workers: usize,
}

/// Data synchronized by the scheduler mutex
pub(super) struct Synced {
    /// Sleeping workers
    sleepers: Vec<usize>,
}

const UNPARK_SHIFT: usize = 16;
const UNPARK_MASK: usize = !SEARCH_MASK;
const SEARCH_MASK: usize = (1 << UNPARK_SHIFT) - 1;

#[derive(Copy, Clone)]
struct State(usize);

impl Idle {
    pub(super) fn new(num_workers: usize) -> (Idle, Synced) {
        let init = State::new(num_workers);

        let idle = Idle {
            state: AtomicUsize::new(init.into()),
            num_workers,
        };

        let synced = Synced {
            sleepers: Vec::with_capacity(num_workers),
        };

        (idle, synced)
    }

    /// If there are no workers actively searching, returns the index of a
    /// worker currently sleeping.
    pub(super) fn worker_to_notify(&self, shared: &Shared) -> Option<usize> {
        // If at least one worker is spinning, work being notified will
        // eventually be found. A searching thread will find **some** work and
        // notify another worker, eventually leading to our work being found.
        //
        // For this to happen, this load must happen before the thread
        // transitioning `num_searching` to zero. Acquire / Release does not
        // provide sufficient guarantees, so this load is done with `SeqCst` and
        // will pair with the `fetch_sub(1)` when transitioning out of
        // searching.
        if !self.notify_should_wakeup() {
            return None;
        }

        // Acquire the lock
        let mut lock = shared.synced.lock();

        // Check again, now that the lock is acquired
        if !self.notify_should_wakeup() {
            return None;
        }

        // A worker should be woken up, atomically increment the number of
        // searching workers as well as the number of unparked workers.
        State::unpark_one(&self.state, 1);

        // Get the worker to unpark
        let ret = lock.idle.sleepers.pop();
        debug_assert!(ret.is_some());

        ret
    }

    /// Returns `true` if the worker needs to do a final check for submitted
    /// work.
    pub(super) fn transition_worker_to_parked(
        &self,
        shared: &Shared,
        worker: usize,
        is_searching: bool,
    ) -> bool {
        // Acquire the lock
        let mut lock = shared.synced.lock();

        // Decrement the number of unparked threads
        let ret = State::dec_num_unparked(&self.state, is_searching);

        // Track the sleeping worker
        lock.idle.sleepers.push(worker);

        ret
    }

    pub(super) fn transition_worker_to_searching(&self) -> bool {
        let state = State::load(&self.state, SeqCst);
        if 2 * state.num_searching() >= self.num_workers {
            return false;
        }

        // It is possible for this routine to allow more than 50% of the workers
        // to search. That is OK. Limiting searchers is only an optimization to
        // prevent too much contention.
        State::inc_num_searching(&self.state, SeqCst);
        true
    }

    /// A lightweight transition from searching -> running.
    ///
    /// Returns `true` if this is the final searching worker. The caller
    /// **must** notify a new worker.
    pub(super) fn transition_worker_from_searching(&self) -> bool {
        State::dec_num_searching(&self.state)
    }

    /// Unpark a specific worker. This happens if tasks are submitted from
    /// within the worker's park routine.
    ///
    /// Returns `true` if the worker was parked before calling the method.
    pub(super) fn unpark_worker_by_id(&self, shared: &Shared, worker_id: usize) -> bool {
        let mut lock = shared.synced.lock();
        let sleepers = &mut lock.idle.sleepers;

        for index in 0..sleepers.len() {
            if sleepers[index] == worker_id {
                sleepers.swap_remove(index);

                // Update the state accordingly while the lock is held.
                State::unpark_one(&self.state, 0);

                return true;
            }
        }

        false
    }

    /// Returns `true` if `worker_id` is contained in the sleep set.
    pub(super) fn is_parked(&self, shared: &Shared, worker_id: usize) -> bool {
        let lock = shared.synced.lock();
        lock.idle.sleepers.contains(&worker_id)
    }

    fn notify_should_wakeup(&self) -> bool {
        let state = State(self.state.fetch_add(0, SeqCst));
        state.num_searching() == 0 && state.num_unparked() < self.num_workers
    }
}

impl State {
    fn new(num_workers: usize) -> State {
        // All workers start in the unparked state
        let ret = State(num_workers << UNPARK_SHIFT);
        debug_assert_eq!(num_workers, ret.num_unparked());
        debug_assert_eq!(0, ret.num_searching());
        ret
    }

    fn load(cell: &AtomicUsize, ordering: Ordering) -> State {
        State(cell.load(ordering))
    }

    fn unpark_one(cell: &AtomicUsize, num_searching: usize) {
        cell.fetch_add(num_searching | (1 << UNPARK_SHIFT), SeqCst);
    }

    fn inc_num_searching(cell: &AtomicUsize, ordering: Ordering) {
        cell.fetch_add(1, ordering);
    }

    /// Returns `true` if this is the final searching worker
    fn dec_num_searching(cell: &AtomicUsize) -> bool {
        let state = State(cell.fetch_sub(1, SeqCst));
        state.num_searching() == 1
    }

    /// Track a sleeping worker
    ///
    /// Returns `true` if this is the final searching worker.
    fn dec_num_unparked(cell: &AtomicUsize, is_searching: bool) -> bool {
        let mut dec = 1 << UNPARK_SHIFT;

        if is_searching {
            dec += 1;
        }

        let prev = State(cell.fetch_sub(dec, SeqCst));
        is_searching && prev.num_searching() == 1
    }

    /// Number of workers currently searching
    fn num_searching(self) -> usize {
        self.0 & SEARCH_MASK
    }

    /// Number of workers currently unparked
    fn num_unparked(self) -> usize {
        (self.0 & UNPARK_MASK) >> UNPARK_SHIFT
    }
}

impl From<usize> for State {
    fn from(src: usize) -> State {
        State(src)
    }
}

impl From<State> for usize {
    fn from(src: State) -> usize {
        src.0
    }
}

impl fmt::Debug for State {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("worker::State")
            .field("num_unparked", &self.num_unparked())
            .field("num_searching", &self.num_searching())
            .finish()
    }
}

#[test]
fn test_state() {
    assert_eq!(0, UNPARK_MASK & SEARCH_MASK);
    assert_eq!(0, !(UNPARK_MASK | SEARCH_MASK));

    let state = State::new(10);
    assert_eq!(10, state.num_unparked());
    assert_eq!(0, state.num_searching());
}