1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
//! Generating UUIDs from timestamps.
//!
//! Timestamps are used in a few UUID versions as a source of decentralized
//! uniqueness (as in versions 1 and 6), and as a way to enable sorting (as
//! in versions 6 and 7). Timestamps aren't encoded the same way by all UUID
//! versions so this module provides a single [`Timestamp`] type that can
//! convert between them.
//!
//! # Timestamp representations in UUIDs
//!
//! Versions 1 and 6 UUIDs use a bespoke timestamp that consists of the
//! number of 100ns ticks since `1582-10-15 00:00:00`, along with
//! a counter value to avoid duplicates.
//!
//! Version 7 UUIDs use a more standard timestamp that consists of the
//! number of millisecond ticks since the Unix epoch (`1970-01-01 00:00:00`).
//!
//! # References
//!
//! * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
//! * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
use crate::Uuid;
/// The number of 100 nanosecond ticks between the RFC4122 epoch
/// (`1582-10-15 00:00:00`) and the Unix epoch (`1970-01-01 00:00:00`).
pub const UUID_TICKS_BETWEEN_EPOCHS: u64 = 0x01B2_1DD2_1381_4000;
/// A timestamp that can be encoded into a UUID.
///
/// This type abstracts the specific encoding, so versions 1, 6, and 7
/// UUIDs can both be supported through the same type, even
/// though they have a different representation of a timestamp.
///
/// # References
///
/// * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
/// * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
/// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Timestamp {
pub(crate) seconds: u64,
pub(crate) nanos: u32,
#[cfg(any(feature = "v1", feature = "v6"))]
pub(crate) counter: u16,
}
impl Timestamp {
/// Get a timestamp representing the current system time.
///
/// This method defers to the standard library's `SystemTime` type.
///
/// # Panics
///
/// This method will panic if calculating the elapsed time since the Unix epoch fails.
#[cfg(feature = "std")]
pub fn now(context: impl ClockSequence<Output = u16>) -> Self {
#[cfg(not(any(feature = "v1", feature = "v6")))]
{
let _ = context;
}
let (seconds, nanos) = now();
Timestamp {
seconds,
nanos,
#[cfg(any(feature = "v1", feature = "v6"))]
counter: context.generate_sequence(seconds, nanos),
}
}
/// Construct a `Timestamp` from an RFC4122 timestamp and counter, as used
/// in versions 1 and 6 UUIDs.
pub const fn from_rfc4122(ticks: u64, counter: u16) -> Self {
#[cfg(not(any(feature = "v1", feature = "v6")))]
{
let _ = counter;
}
let (seconds, nanos) = Self::rfc4122_to_unix(ticks);
Timestamp {
seconds,
nanos,
#[cfg(any(feature = "v1", feature = "v6"))]
counter,
}
}
/// Construct a `Timestamp` from a Unix timestamp, as used in version 7 UUIDs.
pub fn from_unix(context: impl ClockSequence<Output = u16>, seconds: u64, nanos: u32) -> Self {
#[cfg(not(any(feature = "v1", feature = "v6")))]
{
let _ = context;
Timestamp { seconds, nanos }
}
#[cfg(any(feature = "v1", feature = "v6"))]
{
let counter = context.generate_sequence(seconds, nanos);
Timestamp {
seconds,
nanos,
counter,
}
}
}
/// Get the value of the timestamp as an RFC4122 timestamp and counter,
/// as used in versions 1 and 6 UUIDs.
#[cfg(any(feature = "v1", feature = "v6"))]
pub const fn to_rfc4122(&self) -> (u64, u16) {
(
Self::unix_to_rfc4122_ticks(self.seconds, self.nanos),
self.counter,
)
}
/// Get the value of the timestamp as a Unix timestamp, as used in version 7 UUIDs.
pub const fn to_unix(&self) -> (u64, u32) {
(self.seconds, self.nanos)
}
#[cfg(any(feature = "v1", feature = "v6"))]
const fn unix_to_rfc4122_ticks(seconds: u64, nanos: u32) -> u64 {
let ticks = UUID_TICKS_BETWEEN_EPOCHS + seconds * 10_000_000 + nanos as u64 / 100;
ticks
}
const fn rfc4122_to_unix(ticks: u64) -> (u64, u32) {
(
(ticks - UUID_TICKS_BETWEEN_EPOCHS) / 10_000_000,
((ticks - UUID_TICKS_BETWEEN_EPOCHS) % 10_000_000) as u32 * 100,
)
}
#[deprecated(note = "use `to_unix` instead")]
/// Get the number of fractional nanoseconds in the Unix timestamp.
///
/// This method is deprecated and probably doesn't do what you're expecting it to.
/// It doesn't return the timestamp as nanoseconds since the Unix epoch, it returns
/// the fractional seconds of the timestamp.
pub const fn to_unix_nanos(&self) -> u32 {
// NOTE: This method never did what it said on the tin: instead of
// converting the timestamp into nanos it simply returned the nanoseconds
// part of the timestamp.
//
// We can't fix the behavior because the return type is too small to fit
// a useful value for nanoseconds since the epoch.
self.nanos
}
}
pub(crate) const fn encode_rfc4122_timestamp(ticks: u64, counter: u16, node_id: &[u8; 6]) -> Uuid {
let time_low = (ticks & 0xFFFF_FFFF) as u32;
let time_mid = ((ticks >> 32) & 0xFFFF) as u16;
let time_high_and_version = (((ticks >> 48) & 0x0FFF) as u16) | (1 << 12);
let mut d4 = [0; 8];
d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
d4[1] = (counter & 0xFF) as u8;
d4[2] = node_id[0];
d4[3] = node_id[1];
d4[4] = node_id[2];
d4[5] = node_id[3];
d4[6] = node_id[4];
d4[7] = node_id[5];
Uuid::from_fields(time_low, time_mid, time_high_and_version, &d4)
}
pub(crate) const fn decode_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
let bytes = uuid.as_bytes();
let ticks: u64 = ((bytes[6] & 0x0F) as u64) << 56
| (bytes[7] as u64) << 48
| (bytes[4] as u64) << 40
| (bytes[5] as u64) << 32
| (bytes[0] as u64) << 24
| (bytes[1] as u64) << 16
| (bytes[2] as u64) << 8
| (bytes[3] as u64);
let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
(ticks, counter)
}
#[cfg(uuid_unstable)]
pub(crate) const fn encode_sorted_rfc4122_timestamp(
ticks: u64,
counter: u16,
node_id: &[u8; 6],
) -> Uuid {
let time_high = ((ticks >> 28) & 0xFFFF_FFFF) as u32;
let time_mid = ((ticks >> 12) & 0xFFFF) as u16;
let time_low_and_version = ((ticks & 0x0FFF) as u16) | (0x6 << 12);
let mut d4 = [0; 8];
d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
d4[1] = (counter & 0xFF) as u8;
d4[2] = node_id[0];
d4[3] = node_id[1];
d4[4] = node_id[2];
d4[5] = node_id[3];
d4[6] = node_id[4];
d4[7] = node_id[5];
Uuid::from_fields(time_high, time_mid, time_low_and_version, &d4)
}
#[cfg(uuid_unstable)]
pub(crate) const fn decode_sorted_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
let bytes = uuid.as_bytes();
let ticks: u64 = ((bytes[0]) as u64) << 52
| (bytes[1] as u64) << 44
| (bytes[2] as u64) << 36
| (bytes[3] as u64) << 28
| (bytes[4] as u64) << 20
| (bytes[5] as u64) << 12
| ((bytes[6] & 0xF) as u64) << 8
| (bytes[7] as u64);
let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
(ticks, counter)
}
#[cfg(uuid_unstable)]
pub(crate) const fn encode_unix_timestamp_millis(millis: u64, random_bytes: &[u8; 10]) -> Uuid {
let millis_high = ((millis >> 16) & 0xFFFF_FFFF) as u32;
let millis_low = (millis & 0xFFFF) as u16;
let random_and_version =
(random_bytes[0] as u16 | ((random_bytes[1] as u16) << 8) & 0x0FFF) | (0x7 << 12);
let mut d4 = [0; 8];
d4[0] = (random_bytes[2] & 0x3F) | 0x80;
d4[1] = random_bytes[3];
d4[2] = random_bytes[4];
d4[3] = random_bytes[5];
d4[4] = random_bytes[6];
d4[5] = random_bytes[7];
d4[6] = random_bytes[8];
d4[7] = random_bytes[9];
Uuid::from_fields(millis_high, millis_low, random_and_version, &d4)
}
#[cfg(uuid_unstable)]
pub(crate) const fn decode_unix_timestamp_millis(uuid: &Uuid) -> u64 {
let bytes = uuid.as_bytes();
let millis: u64 = (bytes[0] as u64) << 40
| (bytes[1] as u64) << 32
| (bytes[2] as u64) << 24
| (bytes[3] as u64) << 16
| (bytes[4] as u64) << 8
| (bytes[5] as u64);
millis
}
#[cfg(all(feature = "std", feature = "js", target_arch = "wasm32"))]
fn now() -> (u64, u32) {
use wasm_bindgen::prelude::*;
#[wasm_bindgen]
extern "C" {
#[wasm_bindgen(js_namespace = Date)]
fn now() -> f64;
}
let now = now();
let secs = (now / 1_000.0) as u64;
let nanos = ((now % 1_000.0) * 1_000_000.0) as u32;
dbg!((secs, nanos))
}
#[cfg(all(feature = "std", any(not(feature = "js"), not(target_arch = "wasm32"))))]
fn now() -> (u64, u32) {
let dur = std::time::SystemTime::UNIX_EPOCH
.elapsed()
.expect("Getting elapsed time since UNIX_EPOCH. If this fails, we've somehow violated causality");
(dur.as_secs(), dur.subsec_nanos())
}
/// A counter that can be used by version 1 and version 6 UUIDs to support
/// the uniqueness of timestamps.
///
/// # References
///
/// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
pub trait ClockSequence {
/// The type of sequence returned by this counter.
type Output;
/// Get the next value in the sequence to feed into a timestamp.
///
/// This method will be called each time a [`Timestamp`] is constructed.
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output;
}
impl<'a, T: ClockSequence + ?Sized> ClockSequence for &'a T {
type Output = T::Output;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
(**self).generate_sequence(seconds, subsec_nanos)
}
}
/// Default implementations for the [`ClockSequence`] trait.
pub mod context {
use super::ClockSequence;
#[cfg(any(feature = "v1", feature = "v6"))]
use atomic::{Atomic, Ordering};
/// An empty counter that will always return the value `0`.
///
/// This type should be used when constructing timestamps for version 7 UUIDs,
/// since they don't need a counter for uniqueness.
#[derive(Debug, Clone, Copy, Default)]
pub struct NoContext;
impl ClockSequence for NoContext {
type Output = u16;
fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
0
}
}
#[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
static CONTEXT: Context = Context {
count: Atomic::new(0),
};
#[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
static CONTEXT_INITIALIZED: Atomic<bool> = Atomic::new(false);
#[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
pub(crate) fn shared_context() -> &'static Context {
// If the context is in its initial state then assign it to a random value
// It doesn't matter if multiple threads observe `false` here and initialize the context
if CONTEXT_INITIALIZED
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()
{
CONTEXT.count.store(crate::rng::u16(), Ordering::Release);
}
&CONTEXT
}
/// A thread-safe, wrapping counter that produces 14-bit numbers.
///
/// This type should be used when constructing version 1 and version 6 UUIDs.
#[derive(Debug)]
#[cfg(any(feature = "v1", feature = "v6"))]
pub struct Context {
count: Atomic<u16>,
}
#[cfg(any(feature = "v1", feature = "v6"))]
impl Context {
/// Construct a new context that's initialized with the given value.
///
/// The starting value should be a random number, so that UUIDs from
/// different systems with the same timestamps are less likely to collide.
/// When the `rng` feature is enabled, prefer the [`Context::new_random`] method.
pub const fn new(count: u16) -> Self {
Self {
count: Atomic::<u16>::new(count),
}
}
/// Construct a new context that's initialized with a random value.
#[cfg(feature = "rng")]
pub fn new_random() -> Self {
Self {
count: Atomic::<u16>::new(crate::rng::u16()),
}
}
}
#[cfg(any(feature = "v1", feature = "v6"))]
impl ClockSequence for Context {
type Output = u16;
fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
// RFC4122 reserves 2 bits of the clock sequence so the actual
// maximum value is smaller than `u16::MAX`. Since we unconditionally
// increment the clock sequence we want to wrap once it becomes larger
// than what we can represent in a "u14". Otherwise there'd be patches
// where the clock sequence doesn't change regardless of the timestamp
self.count.fetch_add(1, Ordering::AcqRel) % (u16::MAX >> 2)
}
}
}