1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use std::io;
use std::io::prelude::*;
use std::mem;

use crate::{Compress, Decompress, DecompressError, FlushCompress, FlushDecompress, Status};

#[derive(Debug)]
pub struct Writer<W: Write, D: Ops> {
    obj: Option<W>,
    pub data: D,
    buf: Vec<u8>,
}

pub trait Ops {
    type Flush: Flush;
    fn total_in(&self) -> u64;
    fn total_out(&self) -> u64;
    fn run(
        &mut self,
        input: &[u8],
        output: &mut [u8],
        flush: Self::Flush,
    ) -> Result<Status, DecompressError>;
    fn run_vec(
        &mut self,
        input: &[u8],
        output: &mut Vec<u8>,
        flush: Self::Flush,
    ) -> Result<Status, DecompressError>;
}

impl Ops for Compress {
    type Flush = FlushCompress;
    fn total_in(&self) -> u64 {
        self.total_in()
    }
    fn total_out(&self) -> u64 {
        self.total_out()
    }
    fn run(
        &mut self,
        input: &[u8],
        output: &mut [u8],
        flush: FlushCompress,
    ) -> Result<Status, DecompressError> {
        Ok(self.compress(input, output, flush).unwrap())
    }
    fn run_vec(
        &mut self,
        input: &[u8],
        output: &mut Vec<u8>,
        flush: FlushCompress,
    ) -> Result<Status, DecompressError> {
        Ok(self.compress_vec(input, output, flush).unwrap())
    }
}

impl Ops for Decompress {
    type Flush = FlushDecompress;
    fn total_in(&self) -> u64 {
        self.total_in()
    }
    fn total_out(&self) -> u64 {
        self.total_out()
    }
    fn run(
        &mut self,
        input: &[u8],
        output: &mut [u8],
        flush: FlushDecompress,
    ) -> Result<Status, DecompressError> {
        self.decompress(input, output, flush)
    }
    fn run_vec(
        &mut self,
        input: &[u8],
        output: &mut Vec<u8>,
        flush: FlushDecompress,
    ) -> Result<Status, DecompressError> {
        self.decompress_vec(input, output, flush)
    }
}

pub trait Flush {
    fn none() -> Self;
    fn sync() -> Self;
    fn finish() -> Self;
}

impl Flush for FlushCompress {
    fn none() -> Self {
        FlushCompress::None
    }

    fn sync() -> Self {
        FlushCompress::Sync
    }

    fn finish() -> Self {
        FlushCompress::Finish
    }
}

impl Flush for FlushDecompress {
    fn none() -> Self {
        FlushDecompress::None
    }

    fn sync() -> Self {
        FlushDecompress::Sync
    }

    fn finish() -> Self {
        FlushDecompress::Finish
    }
}

pub fn read<R, D>(obj: &mut R, data: &mut D, dst: &mut [u8]) -> io::Result<usize>
where
    R: BufRead,
    D: Ops,
{
    loop {
        let (read, consumed, ret, eof);
        {
            let input = obj.fill_buf()?;
            eof = input.is_empty();
            let before_out = data.total_out();
            let before_in = data.total_in();
            let flush = if eof {
                D::Flush::finish()
            } else {
                D::Flush::none()
            };
            ret = data.run(input, dst, flush);
            read = (data.total_out() - before_out) as usize;
            consumed = (data.total_in() - before_in) as usize;
        }
        obj.consume(consumed);

        match ret {
            // If we haven't ready any data and we haven't hit EOF yet,
            // then we need to keep asking for more data because if we
            // return that 0 bytes of data have been read then it will
            // be interpreted as EOF.
            Ok(Status::Ok) | Ok(Status::BufError) if read == 0 && !eof && !dst.is_empty() => {
                continue
            }
            Ok(Status::Ok) | Ok(Status::BufError) | Ok(Status::StreamEnd) => return Ok(read),

            Err(..) => {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    "corrupt deflate stream",
                ))
            }
        }
    }
}

impl<W: Write, D: Ops> Writer<W, D> {
    pub fn new(w: W, d: D) -> Writer<W, D> {
        Writer {
            obj: Some(w),
            data: d,
            buf: Vec::with_capacity(32 * 1024),
        }
    }

    pub fn finish(&mut self) -> io::Result<()> {
        loop {
            self.dump()?;

            let before = self.data.total_out();
            self.data.run_vec(&[], &mut self.buf, D::Flush::finish())?;
            if before == self.data.total_out() {
                return Ok(());
            }
        }
    }

    pub fn replace(&mut self, w: W) -> W {
        self.buf.truncate(0);
        mem::replace(self.get_mut(), w)
    }

    pub fn get_ref(&self) -> &W {
        self.obj.as_ref().unwrap()
    }

    pub fn get_mut(&mut self) -> &mut W {
        self.obj.as_mut().unwrap()
    }

    // Note that this should only be called if the outer object is just about
    // to be consumed!
    //
    // (e.g. an implementation of `into_inner`)
    pub fn take_inner(&mut self) -> W {
        self.obj.take().unwrap()
    }

    pub fn is_present(&self) -> bool {
        self.obj.is_some()
    }

    // Returns total written bytes and status of underlying codec
    pub(crate) fn write_with_status(&mut self, buf: &[u8]) -> io::Result<(usize, Status)> {
        // miniz isn't guaranteed to actually write any of the buffer provided,
        // it may be in a flushing mode where it's just giving us data before
        // we're actually giving it any data. We don't want to spuriously return
        // `Ok(0)` when possible as it will cause calls to write_all() to fail.
        // As a result we execute this in a loop to ensure that we try our
        // darndest to write the data.
        loop {
            self.dump()?;

            let before_in = self.data.total_in();
            let ret = self.data.run_vec(buf, &mut self.buf, D::Flush::none());
            let written = (self.data.total_in() - before_in) as usize;
            let is_stream_end = matches!(ret, Ok(Status::StreamEnd));

            if !buf.is_empty() && written == 0 && ret.is_ok() && !is_stream_end {
                continue;
            }
            return match ret {
                Ok(st) => match st {
                    Status::Ok | Status::BufError | Status::StreamEnd => Ok((written, st)),
                },
                Err(..) => Err(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    "corrupt deflate stream",
                )),
            };
        }
    }

    fn dump(&mut self) -> io::Result<()> {
        // TODO: should manage this buffer not with `drain` but probably more of
        // a deque-like strategy.
        while !self.buf.is_empty() {
            let n = self.obj.as_mut().unwrap().write(&self.buf)?;
            if n == 0 {
                return Err(io::ErrorKind::WriteZero.into());
            }
            self.buf.drain(..n);
        }
        Ok(())
    }
}

impl<W: Write, D: Ops> Write for Writer<W, D> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.write_with_status(buf).map(|res| res.0)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.data
            .run_vec(&[], &mut self.buf, D::Flush::sync())
            .unwrap();

        // Unfortunately miniz doesn't actually tell us when we're done with
        // pulling out all the data from the internal stream. To remedy this we
        // have to continually ask the stream for more memory until it doesn't
        // give us a chunk of memory the same size as our own internal buffer,
        // at which point we assume it's reached the end.
        loop {
            self.dump()?;
            let before = self.data.total_out();
            self.data
                .run_vec(&[], &mut self.buf, D::Flush::none())
                .unwrap();
            if before == self.data.total_out() {
                break;
            }
        }

        self.obj.as_mut().unwrap().flush()
    }
}

impl<W: Write, D: Ops> Drop for Writer<W, D> {
    fn drop(&mut self) {
        if self.obj.is_some() {
            let _ = self.finish();
        }
    }
}