1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use crate::io::util::DEFAULT_BUF_SIZE;
use crate::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf};
use pin_project_lite::pin_project;
use std::fmt;
use std::io::{self, IoSlice, SeekFrom, Write};
use std::pin::Pin;
use std::task::{Context, Poll};
pin_project! {
/// Wraps a writer and buffers its output.
///
/// It can be excessively inefficient to work directly with something that
/// implements [`AsyncWrite`]. A `BufWriter` keeps an in-memory buffer of data and
/// writes it to an underlying writer in large, infrequent batches.
///
/// `BufWriter` can improve the speed of programs that make *small* and
/// *repeated* write calls to the same file or network socket. It does not
/// help when writing very large amounts at once, or writing just one or a few
/// times. It also provides no advantage when writing to a destination that is
/// in memory, like a `Vec<u8>`.
///
/// When the `BufWriter` is dropped, the contents of its buffer will be
/// discarded. Creating multiple instances of a `BufWriter` on the same
/// stream can cause data loss. If you need to write out the contents of its
/// buffer, you must manually call flush before the writer is dropped.
///
/// [`AsyncWrite`]: AsyncWrite
/// [`flush`]: super::AsyncWriteExt::flush
///
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub struct BufWriter<W> {
#[pin]
pub(super) inner: W,
pub(super) buf: Vec<u8>,
pub(super) written: usize,
pub(super) seek_state: SeekState,
}
}
impl<W: AsyncWrite> BufWriter<W> {
/// Creates a new `BufWriter` with a default buffer capacity. The default is currently 8 KB,
/// but may change in the future.
pub fn new(inner: W) -> Self {
Self::with_capacity(DEFAULT_BUF_SIZE, inner)
}
/// Creates a new `BufWriter` with the specified buffer capacity.
pub fn with_capacity(cap: usize, inner: W) -> Self {
Self {
inner,
buf: Vec::with_capacity(cap),
written: 0,
seek_state: SeekState::Init,
}
}
fn flush_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
let mut me = self.project();
let len = me.buf.len();
let mut ret = Ok(());
while *me.written < len {
match ready!(me.inner.as_mut().poll_write(cx, &me.buf[*me.written..])) {
Ok(0) => {
ret = Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write the buffered data",
));
break;
}
Ok(n) => *me.written += n,
Err(e) => {
ret = Err(e);
break;
}
}
}
if *me.written > 0 {
me.buf.drain(..*me.written);
}
*me.written = 0;
Poll::Ready(ret)
}
/// Gets a reference to the underlying writer.
pub fn get_ref(&self) -> &W {
&self.inner
}
/// Gets a mutable reference to the underlying writer.
///
/// It is inadvisable to directly write to the underlying writer.
pub fn get_mut(&mut self) -> &mut W {
&mut self.inner
}
/// Gets a pinned mutable reference to the underlying writer.
///
/// It is inadvisable to directly write to the underlying writer.
pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut W> {
self.project().inner
}
/// Consumes this `BufWriter`, returning the underlying writer.
///
/// Note that any leftover data in the internal buffer is lost.
pub fn into_inner(self) -> W {
self.inner
}
/// Returns a reference to the internally buffered data.
pub fn buffer(&self) -> &[u8] {
&self.buf
}
}
impl<W: AsyncWrite> AsyncWrite for BufWriter<W> {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
if self.buf.len() + buf.len() > self.buf.capacity() {
ready!(self.as_mut().flush_buf(cx))?;
}
let me = self.project();
if buf.len() >= me.buf.capacity() {
me.inner.poll_write(cx, buf)
} else {
Poll::Ready(me.buf.write(buf))
}
}
fn poll_write_vectored(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
mut bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
if self.inner.is_write_vectored() {
let total_len = bufs
.iter()
.fold(0usize, |acc, b| acc.saturating_add(b.len()));
if total_len > self.buf.capacity() - self.buf.len() {
ready!(self.as_mut().flush_buf(cx))?;
}
let me = self.as_mut().project();
if total_len >= me.buf.capacity() {
// It's more efficient to pass the slices directly to the
// underlying writer than to buffer them.
// The case when the total_len calculation saturates at
// usize::MAX is also handled here.
me.inner.poll_write_vectored(cx, bufs)
} else {
bufs.iter().for_each(|b| me.buf.extend_from_slice(b));
Poll::Ready(Ok(total_len))
}
} else {
// Remove empty buffers at the beginning of bufs.
while bufs.first().map(|buf| buf.len()) == Some(0) {
bufs = &bufs[1..];
}
if bufs.is_empty() {
return Poll::Ready(Ok(0));
}
// Flush if the first buffer doesn't fit.
let first_len = bufs[0].len();
if first_len > self.buf.capacity() - self.buf.len() {
ready!(self.as_mut().flush_buf(cx))?;
debug_assert!(self.buf.is_empty());
}
let me = self.as_mut().project();
if first_len >= me.buf.capacity() {
// The slice is at least as large as the buffering capacity,
// so it's better to write it directly, bypassing the buffer.
debug_assert!(me.buf.is_empty());
return me.inner.poll_write(cx, &bufs[0]);
} else {
me.buf.extend_from_slice(&bufs[0]);
bufs = &bufs[1..];
}
let mut total_written = first_len;
debug_assert!(total_written != 0);
// Append the buffers that fit in the internal buffer.
for buf in bufs {
if buf.len() > me.buf.capacity() - me.buf.len() {
break;
} else {
me.buf.extend_from_slice(buf);
total_written += buf.len();
}
}
Poll::Ready(Ok(total_written))
}
}
fn is_write_vectored(&self) -> bool {
true
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
ready!(self.as_mut().flush_buf(cx))?;
self.get_pin_mut().poll_flush(cx)
}
fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
ready!(self.as_mut().flush_buf(cx))?;
self.get_pin_mut().poll_shutdown(cx)
}
}
#[derive(Debug, Clone, Copy)]
pub(super) enum SeekState {
/// start_seek has not been called.
Init,
/// start_seek has been called, but poll_complete has not yet been called.
Start(SeekFrom),
/// Waiting for completion of poll_complete.
Pending,
}
/// Seek to the offset, in bytes, in the underlying writer.
///
/// Seeking always writes out the internal buffer before seeking.
impl<W: AsyncWrite + AsyncSeek> AsyncSeek for BufWriter<W> {
fn start_seek(self: Pin<&mut Self>, pos: SeekFrom) -> io::Result<()> {
// We need to flush the internal buffer before seeking.
// It receives a `Context` and returns a `Poll`, so it cannot be called
// inside `start_seek`.
*self.project().seek_state = SeekState::Start(pos);
Ok(())
}
fn poll_complete(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
let pos = match self.seek_state {
SeekState::Init => {
return self.project().inner.poll_complete(cx);
}
SeekState::Start(pos) => Some(pos),
SeekState::Pending => None,
};
// Flush the internal buffer before seeking.
ready!(self.as_mut().flush_buf(cx))?;
let mut me = self.project();
if let Some(pos) = pos {
// Ensure previous seeks have finished before starting a new one
ready!(me.inner.as_mut().poll_complete(cx))?;
if let Err(e) = me.inner.as_mut().start_seek(pos) {
*me.seek_state = SeekState::Init;
return Poll::Ready(Err(e));
}
}
match me.inner.poll_complete(cx) {
Poll::Ready(res) => {
*me.seek_state = SeekState::Init;
Poll::Ready(res)
}
Poll::Pending => {
*me.seek_state = SeekState::Pending;
Poll::Pending
}
}
}
}
impl<W: AsyncWrite + AsyncRead> AsyncRead for BufWriter<W> {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
self.get_pin_mut().poll_read(cx, buf)
}
}
impl<W: AsyncWrite + AsyncBufRead> AsyncBufRead for BufWriter<W> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
self.get_pin_mut().poll_fill_buf(cx)
}
fn consume(self: Pin<&mut Self>, amt: usize) {
self.get_pin_mut().consume(amt)
}
}
impl<W: fmt::Debug> fmt::Debug for BufWriter<W> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BufWriter")
.field("writer", &self.inner)
.field(
"buffer",
&format_args!("{}/{}", self.buf.len(), self.buf.capacity()),
)
.field("written", &self.written)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn assert_unpin() {
crate::is_unpin::<BufWriter<()>>();
}
}