1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
use std::cell::{Cell, RefCell};
use alloc::vec::{self, Vec};
/// A trait to unify `FnMut` for `GroupBy` with the chunk key in `IntoChunks`
trait KeyFunction<A> {
type Key;
fn call_mut(&mut self, arg: A) -> Self::Key;
}
impl<A, K, F: ?Sized> KeyFunction<A> for F
where F: FnMut(A) -> K
{
type Key = K;
#[inline]
fn call_mut(&mut self, arg: A) -> Self::Key {
(*self)(arg)
}
}
/// `ChunkIndex` acts like the grouping key function for `IntoChunks`
#[derive(Debug)]
struct ChunkIndex {
size: usize,
index: usize,
key: usize,
}
impl ChunkIndex {
#[inline(always)]
fn new(size: usize) -> Self {
ChunkIndex {
size,
index: 0,
key: 0,
}
}
}
impl<A> KeyFunction<A> for ChunkIndex {
type Key = usize;
#[inline(always)]
fn call_mut(&mut self, _arg: A) -> Self::Key {
if self.index == self.size {
self.key += 1;
self.index = 0;
}
self.index += 1;
self.key
}
}
struct GroupInner<K, I, F>
where I: Iterator
{
key: F,
iter: I,
current_key: Option<K>,
current_elt: Option<I::Item>,
/// flag set if iterator is exhausted
done: bool,
/// Index of group we are currently buffering or visiting
top_group: usize,
/// Least index for which we still have elements buffered
oldest_buffered_group: usize,
/// Group index for `buffer[0]` -- the slots
/// bottom_group..oldest_buffered_group are unused and will be erased when
/// that range is large enough.
bottom_group: usize,
/// Buffered groups, from `bottom_group` (index 0) to `top_group`.
buffer: Vec<vec::IntoIter<I::Item>>,
/// index of last group iter that was dropped, usize::MAX == none
dropped_group: usize,
}
impl<K, I, F> GroupInner<K, I, F>
where I: Iterator,
F: for<'a> KeyFunction<&'a I::Item, Key=K>,
K: PartialEq,
{
/// `client`: Index of group that requests next element
#[inline(always)]
fn step(&mut self, client: usize) -> Option<I::Item> {
/*
println!("client={}, bottom_group={}, oldest_buffered_group={}, top_group={}, buffers=[{}]",
client, self.bottom_group, self.oldest_buffered_group,
self.top_group,
self.buffer.iter().map(|elt| elt.len()).format(", "));
*/
if client < self.oldest_buffered_group {
None
} else if client < self.top_group ||
(client == self.top_group &&
self.buffer.len() > self.top_group - self.bottom_group)
{
self.lookup_buffer(client)
} else if self.done {
None
} else if self.top_group == client {
self.step_current()
} else {
self.step_buffering(client)
}
}
#[inline(never)]
fn lookup_buffer(&mut self, client: usize) -> Option<I::Item> {
// if `bufidx` doesn't exist in self.buffer, it might be empty
let bufidx = client - self.bottom_group;
if client < self.oldest_buffered_group {
return None;
}
let elt = self.buffer.get_mut(bufidx).and_then(|queue| queue.next());
if elt.is_none() && client == self.oldest_buffered_group {
// FIXME: VecDeque is unfortunately not zero allocation when empty,
// so we do this job manually.
// `bottom_group..oldest_buffered_group` is unused, and if it's large enough, erase it.
self.oldest_buffered_group += 1;
// skip forward further empty queues too
while self.buffer.get(self.oldest_buffered_group - self.bottom_group)
.map_or(false, |buf| buf.len() == 0)
{
self.oldest_buffered_group += 1;
}
let nclear = self.oldest_buffered_group - self.bottom_group;
if nclear > 0 && nclear >= self.buffer.len() / 2 {
let mut i = 0;
self.buffer.retain(|buf| {
i += 1;
debug_assert!(buf.len() == 0 || i > nclear);
i > nclear
});
self.bottom_group = self.oldest_buffered_group;
}
}
elt
}
/// Take the next element from the iterator, and set the done
/// flag if exhausted. Must not be called after done.
#[inline(always)]
fn next_element(&mut self) -> Option<I::Item> {
debug_assert!(!self.done);
match self.iter.next() {
None => { self.done = true; None }
otherwise => otherwise,
}
}
#[inline(never)]
fn step_buffering(&mut self, client: usize) -> Option<I::Item> {
// requested a later group -- walk through the current group up to
// the requested group index, and buffer the elements (unless
// the group is marked as dropped).
// Because the `Groups` iterator is always the first to request
// each group index, client is the next index efter top_group.
debug_assert!(self.top_group + 1 == client);
let mut group = Vec::new();
if let Some(elt) = self.current_elt.take() {
if self.top_group != self.dropped_group {
group.push(elt);
}
}
let mut first_elt = None; // first element of the next group
while let Some(elt) = self.next_element() {
let key = self.key.call_mut(&elt);
match self.current_key.take() {
None => {}
Some(old_key) => if old_key != key {
self.current_key = Some(key);
first_elt = Some(elt);
break;
},
}
self.current_key = Some(key);
if self.top_group != self.dropped_group {
group.push(elt);
}
}
if self.top_group != self.dropped_group {
self.push_next_group(group);
}
if first_elt.is_some() {
self.top_group += 1;
debug_assert!(self.top_group == client);
}
first_elt
}
fn push_next_group(&mut self, group: Vec<I::Item>) {
// When we add a new buffered group, fill up slots between oldest_buffered_group and top_group
while self.top_group - self.bottom_group > self.buffer.len() {
if self.buffer.is_empty() {
self.bottom_group += 1;
self.oldest_buffered_group += 1;
} else {
self.buffer.push(Vec::new().into_iter());
}
}
self.buffer.push(group.into_iter());
debug_assert!(self.top_group + 1 - self.bottom_group == self.buffer.len());
}
/// This is the immediate case, where we use no buffering
#[inline]
fn step_current(&mut self) -> Option<I::Item> {
debug_assert!(!self.done);
if let elt @ Some(..) = self.current_elt.take() {
return elt;
}
match self.next_element() {
None => None,
Some(elt) => {
let key = self.key.call_mut(&elt);
match self.current_key.take() {
None => {}
Some(old_key) => if old_key != key {
self.current_key = Some(key);
self.current_elt = Some(elt);
self.top_group += 1;
return None;
},
}
self.current_key = Some(key);
Some(elt)
}
}
}
/// Request the just started groups' key.
///
/// `client`: Index of group
///
/// **Panics** if no group key is available.
fn group_key(&mut self, client: usize) -> K {
// This can only be called after we have just returned the first
// element of a group.
// Perform this by simply buffering one more element, grabbing the
// next key.
debug_assert!(!self.done);
debug_assert!(client == self.top_group);
debug_assert!(self.current_key.is_some());
debug_assert!(self.current_elt.is_none());
let old_key = self.current_key.take().unwrap();
if let Some(elt) = self.next_element() {
let key = self.key.call_mut(&elt);
if old_key != key {
self.top_group += 1;
}
self.current_key = Some(key);
self.current_elt = Some(elt);
}
old_key
}
}
impl<K, I, F> GroupInner<K, I, F>
where I: Iterator,
{
/// Called when a group is dropped
fn drop_group(&mut self, client: usize) {
// It's only useful to track the maximal index
if self.dropped_group == !0 || client > self.dropped_group {
self.dropped_group = client;
}
}
}
/// `GroupBy` is the storage for the lazy grouping operation.
///
/// If the groups are consumed in their original order, or if each
/// group is dropped without keeping it around, then `GroupBy` uses
/// no allocations. It needs allocations only if several group iterators
/// are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the group iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// See [`.group_by()`](crate::Itertools::group_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct GroupBy<K, I, F>
where I: Iterator,
{
inner: RefCell<GroupInner<K, I, F>>,
// the group iterator's current index. Keep this in the main value
// so that simultaneous iterators all use the same state.
index: Cell<usize>,
}
/// Create a new
pub fn new<K, J, F>(iter: J, f: F) -> GroupBy<K, J::IntoIter, F>
where J: IntoIterator,
F: FnMut(&J::Item) -> K,
{
GroupBy {
inner: RefCell::new(GroupInner {
key: f,
iter: iter.into_iter(),
current_key: None,
current_elt: None,
done: false,
top_group: 0,
oldest_buffered_group: 0,
bottom_group: 0,
buffer: Vec::new(),
dropped_group: !0,
}),
index: Cell::new(0),
}
}
impl<K, I, F> GroupBy<K, I, F>
where I: Iterator,
{
/// `client`: Index of group that requests next element
fn step(&self, client: usize) -> Option<I::Item>
where F: FnMut(&I::Item) -> K,
K: PartialEq,
{
self.inner.borrow_mut().step(client)
}
/// `client`: Index of group
fn drop_group(&self, client: usize) {
self.inner.borrow_mut().drop_group(client);
}
}
impl<'a, K, I, F> IntoIterator for &'a GroupBy<K, I, F>
where I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq
{
type Item = (K, Group<'a, K, I, F>);
type IntoIter = Groups<'a, K, I, F>;
fn into_iter(self) -> Self::IntoIter {
Groups { parent: self }
}
}
/// An iterator that yields the Group iterators.
///
/// Iterator element type is `(K, Group)`:
/// the group's key `K` and the group's iterator.
///
/// See [`.group_by()`](crate::Itertools::group_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Groups<'a, K: 'a, I: 'a, F: 'a>
where I: Iterator,
I::Item: 'a
{
parent: &'a GroupBy<K, I, F>,
}
impl<'a, K, I, F> Iterator for Groups<'a, K, I, F>
where I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq
{
type Item = (K, Group<'a, K, I, F>);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let index = self.parent.index.get();
self.parent.index.set(index + 1);
let inner = &mut *self.parent.inner.borrow_mut();
inner.step(index).map(|elt| {
let key = inner.group_key(index);
(key, Group {
parent: self.parent,
index,
first: Some(elt),
})
})
}
}
/// An iterator for the elements in a single group.
///
/// Iterator element type is `I::Item`.
pub struct Group<'a, K: 'a, I: 'a, F: 'a>
where I: Iterator,
I::Item: 'a,
{
parent: &'a GroupBy<K, I, F>,
index: usize,
first: Option<I::Item>,
}
impl<'a, K, I, F> Drop for Group<'a, K, I, F>
where I: Iterator,
I::Item: 'a,
{
fn drop(&mut self) {
self.parent.drop_group(self.index);
}
}
impl<'a, K, I, F> Iterator for Group<'a, K, I, F>
where I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if let elt @ Some(..) = self.first.take() {
return elt;
}
self.parent.step(self.index)
}
}
///// IntoChunks /////
/// Create a new
pub fn new_chunks<J>(iter: J, size: usize) -> IntoChunks<J::IntoIter>
where J: IntoIterator,
{
IntoChunks {
inner: RefCell::new(GroupInner {
key: ChunkIndex::new(size),
iter: iter.into_iter(),
current_key: None,
current_elt: None,
done: false,
top_group: 0,
oldest_buffered_group: 0,
bottom_group: 0,
buffer: Vec::new(),
dropped_group: !0,
}),
index: Cell::new(0),
}
}
/// `ChunkLazy` is the storage for a lazy chunking operation.
///
/// `IntoChunks` behaves just like `GroupBy`: it is iterable, and
/// it only buffers if several chunk iterators are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the chunk iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// Iterator element type is `Chunk`, each chunk's iterator.
///
/// See [`.chunks()`](crate::Itertools::chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct IntoChunks<I>
where I: Iterator,
{
inner: RefCell<GroupInner<usize, I, ChunkIndex>>,
// the chunk iterator's current index. Keep this in the main value
// so that simultaneous iterators all use the same state.
index: Cell<usize>,
}
impl<I> IntoChunks<I>
where I: Iterator,
{
/// `client`: Index of chunk that requests next element
fn step(&self, client: usize) -> Option<I::Item> {
self.inner.borrow_mut().step(client)
}
/// `client`: Index of chunk
fn drop_group(&self, client: usize) {
self.inner.borrow_mut().drop_group(client);
}
}
impl<'a, I> IntoIterator for &'a IntoChunks<I>
where I: Iterator,
I::Item: 'a,
{
type Item = Chunk<'a, I>;
type IntoIter = Chunks<'a, I>;
fn into_iter(self) -> Self::IntoIter {
Chunks {
parent: self,
}
}
}
/// An iterator that yields the Chunk iterators.
///
/// Iterator element type is `Chunk`.
///
/// See [`.chunks()`](crate::Itertools::chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Chunks<'a, I: 'a>
where I: Iterator,
I::Item: 'a,
{
parent: &'a IntoChunks<I>,
}
impl<'a, I> Iterator for Chunks<'a, I>
where I: Iterator,
I::Item: 'a,
{
type Item = Chunk<'a, I>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let index = self.parent.index.get();
self.parent.index.set(index + 1);
let inner = &mut *self.parent.inner.borrow_mut();
inner.step(index).map(|elt| {
Chunk {
parent: self.parent,
index,
first: Some(elt),
}
})
}
}
/// An iterator for the elements in a single chunk.
///
/// Iterator element type is `I::Item`.
pub struct Chunk<'a, I: 'a>
where I: Iterator,
I::Item: 'a,
{
parent: &'a IntoChunks<I>,
index: usize,
first: Option<I::Item>,
}
impl<'a, I> Drop for Chunk<'a, I>
where I: Iterator,
I::Item: 'a,
{
fn drop(&mut self) {
self.parent.drop_group(self.index);
}
}
impl<'a, I> Iterator for Chunk<'a, I>
where I: Iterator,
I::Item: 'a,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if let elt @ Some(..) = self.first.take() {
return elt;
}
self.parent.step(self.index)
}
}