1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
use crate::io::{Interest, PollEvented, ReadBuf, Ready};
use crate::net::{to_socket_addrs, ToSocketAddrs};

use std::fmt;
use std::io;
use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::task::{Context, Poll};

cfg_io_util! {
    use bytes::BufMut;
}

cfg_net! {
    /// A UDP socket.
    ///
    /// UDP is "connectionless", unlike TCP. Meaning, regardless of what address you've bound to, a `UdpSocket`
    /// is free to communicate with many different remotes. In tokio there are basically two main ways to use `UdpSocket`:
    ///
    /// * one to many: [`bind`](`UdpSocket::bind`) and use [`send_to`](`UdpSocket::send_to`)
    ///   and [`recv_from`](`UdpSocket::recv_from`) to communicate with many different addresses
    /// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single address, using [`send`](`UdpSocket::send`)
    ///   and [`recv`](`UdpSocket::recv`) to communicate only with that remote address
    ///
    /// This type does not provide a `split` method, because this functionality
    /// can be achieved by instead wrapping the socket in an [`Arc`]. Note that
    /// you do not need a `Mutex` to share the `UdpSocket` — an `Arc<UdpSocket>`
    /// is enough. This is because all of the methods take `&self` instead of
    /// `&mut self`. Once you have wrapped it in an `Arc`, you can call
    /// `.clone()` on the `Arc<UdpSocket>` to get multiple shared handles to the
    /// same socket. An example of such usage can be found further down.
    ///
    /// [`Arc`]: std::sync::Arc
    ///
    /// # Streams
    ///
    /// If you need to listen over UDP and produce a [`Stream`], you can look
    /// at [`UdpFramed`].
    ///
    /// [`UdpFramed`]: https://docs.rs/tokio-util/latest/tokio_util/udp/struct.UdpFramed.html
    /// [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html
    ///
    /// # Example: one to many (bind)
    ///
    /// Using `bind` we can create a simple echo server that sends and recv's with many different clients:
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let sock = UdpSocket::bind("0.0.0.0:8080").await?;
    ///     let mut buf = [0; 1024];
    ///     loop {
    ///         let (len, addr) = sock.recv_from(&mut buf).await?;
    ///         println!("{:?} bytes received from {:?}", len, addr);
    ///
    ///         let len = sock.send_to(&buf[..len], addr).await?;
    ///         println!("{:?} bytes sent", len);
    ///     }
    /// }
    /// ```
    ///
    /// # Example: one to one (connect)
    ///
    /// Or using `connect` we can echo with a single remote address using `send` and `recv`:
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let sock = UdpSocket::bind("0.0.0.0:8080").await?;
    ///
    ///     let remote_addr = "127.0.0.1:59611";
    ///     sock.connect(remote_addr).await?;
    ///     let mut buf = [0; 1024];
    ///     loop {
    ///         let len = sock.recv(&mut buf).await?;
    ///         println!("{:?} bytes received from {:?}", len, remote_addr);
    ///
    ///         let len = sock.send(&buf[..len]).await?;
    ///         println!("{:?} bytes sent", len);
    ///     }
    /// }
    /// ```
    ///
    /// # Example: Splitting with `Arc`
    ///
    /// Because `send_to` and `recv_from` take `&self`. It's perfectly alright
    /// to use an `Arc<UdpSocket>` and share the references to multiple tasks.
    /// Here is a similar "echo" example that supports concurrent
    /// sending/receiving:
    ///
    /// ```no_run
    /// use tokio::{net::UdpSocket, sync::mpsc};
    /// use std::{io, net::SocketAddr, sync::Arc};
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?;
    ///     let r = Arc::new(sock);
    ///     let s = r.clone();
    ///     let (tx, mut rx) = mpsc::channel::<(Vec<u8>, SocketAddr)>(1_000);
    ///
    ///     tokio::spawn(async move {
    ///         while let Some((bytes, addr)) = rx.recv().await {
    ///             let len = s.send_to(&bytes, &addr).await.unwrap();
    ///             println!("{:?} bytes sent", len);
    ///         }
    ///     });
    ///
    ///     let mut buf = [0; 1024];
    ///     loop {
    ///         let (len, addr) = r.recv_from(&mut buf).await?;
    ///         println!("{:?} bytes received from {:?}", len, addr);
    ///         tx.send((buf[..len].to_vec(), addr)).await.unwrap();
    ///     }
    /// }
    /// ```
    ///
    pub struct UdpSocket {
        io: PollEvented<mio::net::UdpSocket>,
    }
}

impl UdpSocket {
    /// This function will create a new UDP socket and attempt to bind it to
    /// the `addr` provided.
    ///
    /// Binding with a port number of 0 will request that the OS assigns a port
    /// to this listener. The port allocated can be queried via the `local_addr`
    /// method.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let sock = UdpSocket::bind("0.0.0.0:8080").await?;
    ///     // use `sock`
    /// #   let _ = sock;
    ///     Ok(())
    /// }
    /// ```
    pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> {
        let addrs = to_socket_addrs(addr).await?;
        let mut last_err = None;

        for addr in addrs {
            match UdpSocket::bind_addr(addr) {
                Ok(socket) => return Ok(socket),
                Err(e) => last_err = Some(e),
            }
        }

        Err(last_err.unwrap_or_else(|| {
            io::Error::new(
                io::ErrorKind::InvalidInput,
                "could not resolve to any address",
            )
        }))
    }

    fn bind_addr(addr: SocketAddr) -> io::Result<UdpSocket> {
        let sys = mio::net::UdpSocket::bind(addr)?;
        UdpSocket::new(sys)
    }

    #[track_caller]
    fn new(socket: mio::net::UdpSocket) -> io::Result<UdpSocket> {
        let io = PollEvented::new(socket)?;
        Ok(UdpSocket { io })
    }

    /// Creates new `UdpSocket` from a previously bound `std::net::UdpSocket`.
    ///
    /// This function is intended to be used to wrap a UDP socket from the
    /// standard library in the Tokio equivalent.
    ///
    /// This can be used in conjunction with socket2's `Socket` interface to
    /// configure a socket before it's handed off, such as setting options like
    /// `reuse_address` or binding to multiple addresses.
    ///
    /// # Notes
    ///
    /// The caller is responsible for ensuring that the socket is in
    /// non-blocking mode. Otherwise all I/O operations on the socket
    /// will block the thread, which will cause unexpected behavior.
    /// Non-blocking mode can be set using [`set_nonblocking`].
    ///
    /// [`set_nonblocking`]: std::net::UdpSocket::set_nonblocking
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called
    /// from a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// # use std::{io, net::SocketAddr};
    ///
    /// # #[tokio::main]
    /// # async fn main() -> io::Result<()> {
    /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
    /// let std_sock = std::net::UdpSocket::bind(addr)?;
    /// std_sock.set_nonblocking(true)?;
    /// let sock = UdpSocket::from_std(std_sock)?;
    /// // use `sock`
    /// # Ok(())
    /// # }
    /// ```
    #[track_caller]
    pub fn from_std(socket: net::UdpSocket) -> io::Result<UdpSocket> {
        let io = mio::net::UdpSocket::from_std(socket);
        UdpSocket::new(io)
    }

    /// Turns a [`tokio::net::UdpSocket`] into a [`std::net::UdpSocket`].
    ///
    /// The returned [`std::net::UdpSocket`] will have nonblocking mode set as
    /// `true`.  Use [`set_nonblocking`] to change the blocking mode if needed.
    ///
    /// # Examples
    ///
    /// ```rust,no_run
    /// use std::error::Error;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let tokio_socket = tokio::net::UdpSocket::bind("127.0.0.1:0").await?;
    ///     let std_socket = tokio_socket.into_std()?;
    ///     std_socket.set_nonblocking(false)?;
    ///     Ok(())
    /// }
    /// ```
    ///
    /// [`tokio::net::UdpSocket`]: UdpSocket
    /// [`std::net::UdpSocket`]: std::net::UdpSocket
    /// [`set_nonblocking`]: fn@std::net::UdpSocket::set_nonblocking
    pub fn into_std(self) -> io::Result<std::net::UdpSocket> {
        #[cfg(unix)]
        {
            use std::os::unix::io::{FromRawFd, IntoRawFd};
            self.io
                .into_inner()
                .map(|io| io.into_raw_fd())
                .map(|raw_fd| unsafe { std::net::UdpSocket::from_raw_fd(raw_fd) })
        }

        #[cfg(windows)]
        {
            use std::os::windows::io::{FromRawSocket, IntoRawSocket};
            self.io
                .into_inner()
                .map(|io| io.into_raw_socket())
                .map(|raw_socket| unsafe { std::net::UdpSocket::from_raw_socket(raw_socket) })
        }
    }

    fn as_socket(&self) -> socket2::SockRef<'_> {
        socket2::SockRef::from(self)
    }

    /// Returns the local address that this socket is bound to.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// # use std::{io, net::SocketAddr};
    ///
    /// # #[tokio::main]
    /// # async fn main() -> io::Result<()> {
    /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
    /// let sock = UdpSocket::bind(addr).await?;
    /// // the address the socket is bound to
    /// let local_addr = sock.local_addr()?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.io.local_addr()
    }

    /// Returns the socket address of the remote peer this socket was connected to.
    ///
    /// # Example
    ///
    /// ```
    /// use tokio::net::UdpSocket;
    ///
    /// # use std::{io, net::SocketAddr};
    /// # #[tokio::main]
    /// # async fn main() -> io::Result<()> {
    /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap();
    /// let peer = "127.0.0.1:11100".parse::<SocketAddr>().unwrap();
    /// let sock = UdpSocket::bind(addr).await?;
    /// sock.connect(peer).await?;
    /// assert_eq!(peer, sock.peer_addr()?);
    /// #    Ok(())
    /// # }
    /// ```
    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.io.peer_addr()
    }

    /// Connects the UDP socket setting the default destination for send() and
    /// limiting packets that are read via recv from the address specified in
    /// `addr`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// # use std::{io, net::SocketAddr};
    ///
    /// # #[tokio::main]
    /// # async fn main() -> io::Result<()> {
    /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?;
    ///
    /// let remote_addr = "127.0.0.1:59600".parse::<SocketAddr>().unwrap();
    /// sock.connect(remote_addr).await?;
    /// let mut buf = [0u8; 32];
    /// // recv from remote_addr
    /// let len = sock.recv(&mut buf).await?;
    /// // send to remote_addr
    /// let _len = sock.send(&buf[..len]).await?;
    /// # Ok(())
    /// # }
    /// ```
    pub async fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> {
        let addrs = to_socket_addrs(addr).await?;
        let mut last_err = None;

        for addr in addrs {
            match self.io.connect(addr) {
                Ok(_) => return Ok(()),
                Err(e) => last_err = Some(e),
            }
        }

        Err(last_err.unwrap_or_else(|| {
            io::Error::new(
                io::ErrorKind::InvalidInput,
                "could not resolve to any address",
            )
        }))
    }

    /// Waits for any of the requested ready states.
    ///
    /// This function is usually paired with `try_recv()` or `try_send()`. It
    /// can be used to concurrently recv / send to the same socket on a single
    /// task without splitting the socket.
    ///
    /// The function may complete without the socket being ready. This is a
    /// false-positive and attempting an operation will return with
    /// `io::ErrorKind::WouldBlock`. The function can also return with an empty
    /// [`Ready`] set, so you should always check the returned value and possibly
    /// wait again if the requested states are not set.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once a readiness event occurs, the method
    /// will continue to return immediately until the readiness event is
    /// consumed by an attempt to read or write that fails with `WouldBlock` or
    /// `Poll::Pending`.
    ///
    /// # Examples
    ///
    /// Concurrently receive from and send to the socket on the same task
    /// without splitting.
    ///
    /// ```no_run
    /// use tokio::io::{self, Interest};
    /// use tokio::net::UdpSocket;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///     socket.connect("127.0.0.1:8081").await?;
    ///
    ///     loop {
    ///         let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?;
    ///
    ///         if ready.is_readable() {
    ///             // The buffer is **not** included in the async task and will only exist
    ///             // on the stack.
    ///             let mut data = [0; 1024];
    ///             match socket.try_recv(&mut data[..]) {
    ///                 Ok(n) => {
    ///                     println!("received {:?}", &data[..n]);
    ///                 }
    ///                 // False-positive, continue
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
    ///                 Err(e) => {
    ///                     return Err(e);
    ///                 }
    ///             }
    ///         }
    ///
    ///         if ready.is_writable() {
    ///             // Write some data
    ///             match socket.try_send(b"hello world") {
    ///                 Ok(n) => {
    ///                     println!("sent {} bytes", n);
    ///                 }
    ///                 // False-positive, continue
    ///                 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {}
    ///                 Err(e) => {
    ///                     return Err(e);
    ///                 }
    ///             }
    ///         }
    ///     }
    /// }
    /// ```
    pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
        let event = self.io.registration().readiness(interest).await?;
        Ok(event.ready)
    }

    /// Waits for the socket to become writable.
    ///
    /// This function is equivalent to `ready(Interest::WRITABLE)` and is
    /// usually paired with `try_send()` or `try_send_to()`.
    ///
    /// The function may complete without the socket being writable. This is a
    /// false-positive and attempting a `try_send()` will return with
    /// `io::ErrorKind::WouldBlock`.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once a readiness event occurs, the method
    /// will continue to return immediately until the readiness event is
    /// consumed by an attempt to write that fails with `WouldBlock` or
    /// `Poll::Pending`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Bind socket
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///     socket.connect("127.0.0.1:8081").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be writable
    ///         socket.writable().await?;
    ///
    ///         // Try to send data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match socket.try_send(b"hello world") {
    ///             Ok(n) => {
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e);
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub async fn writable(&self) -> io::Result<()> {
        self.ready(Interest::WRITABLE).await?;
        Ok(())
    }

    /// Polls for write/send readiness.
    ///
    /// If the udp stream is not currently ready for sending, this method will
    /// store a clone of the `Waker` from the provided `Context`. When the udp
    /// stream becomes ready for sending, `Waker::wake` will be called on the
    /// waker.
    ///
    /// Note that on multiple calls to `poll_send_ready` or `poll_send`, only
    /// the `Waker` from the `Context` passed to the most recent call is
    /// scheduled to receive a wakeup. (However, `poll_recv_ready` retains a
    /// second, independent waker.)
    ///
    /// This function is intended for cases where creating and pinning a future
    /// via [`writable`] is not feasible. Where possible, using [`writable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if the udp stream is not ready for writing.
    /// * `Poll::Ready(Ok(()))` if the udp stream is ready for writing.
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    ///
    /// [`writable`]: method@Self::writable
    pub fn poll_send_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        self.io.registration().poll_write_ready(cx).map_ok(|_| ())
    }

    /// Sends data on the socket to the remote address that the socket is
    /// connected to.
    ///
    /// The [`connect`] method will connect this socket to a remote address.
    /// This method will fail if the socket is not connected.
    ///
    /// [`connect`]: method@Self::connect
    ///
    /// # Return
    ///
    /// On success, the number of bytes sent is returned, otherwise, the
    /// encountered error is returned.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `send` is used as the event in a
    /// [`tokio::select!`](crate::select) statement and some other branch
    /// completes first, then it is guaranteed that the message was not sent.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::io;
    /// use tokio::net::UdpSocket;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Bind socket
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///     socket.connect("127.0.0.1:8081").await?;
    ///
    ///     // Send a message
    ///     socket.send(b"hello world").await?;
    ///
    ///     Ok(())
    /// }
    /// ```
    pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
        self.io
            .registration()
            .async_io(Interest::WRITABLE, || self.io.send(buf))
            .await
    }

    /// Attempts to send data on the socket to the remote address to which it
    /// was previously `connect`ed.
    ///
    /// The [`connect`] method will connect this socket to a remote address.
    /// This method will fail if the socket is not connected.
    ///
    /// Note that on multiple calls to a `poll_*` method in the send direction,
    /// only the `Waker` from the `Context` passed to the most recent call will
    /// be scheduled to receive a wakeup.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if the socket is not available to write
    /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    ///
    /// [`connect`]: method@Self::connect
    pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> {
        self.io
            .registration()
            .poll_write_io(cx, || self.io.send(buf))
    }

    /// Tries to send data on the socket to the remote address to which it is
    /// connected.
    ///
    /// When the socket buffer is full, `Err(io::ErrorKind::WouldBlock)` is
    /// returned. This function is usually paired with `writable()`.
    ///
    /// # Returns
    ///
    /// If successful, `Ok(n)` is returned, where `n` is the number of bytes
    /// sent. If the socket is not ready to send data,
    /// `Err(ErrorKind::WouldBlock)` is returned.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Bind a UDP socket
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///
    ///     // Connect to a peer
    ///     socket.connect("127.0.0.1:8081").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be writable
    ///         socket.writable().await?;
    ///
    ///         // Try to send data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match socket.try_send(b"hello world") {
    ///             Ok(n) => {
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e);
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> {
        self.io
            .registration()
            .try_io(Interest::WRITABLE, || self.io.send(buf))
    }

    /// Waits for the socket to become readable.
    ///
    /// This function is equivalent to `ready(Interest::READABLE)` and is usually
    /// paired with `try_recv()`.
    ///
    /// The function may complete without the socket being readable. This is a
    /// false-positive and attempting a `try_recv()` will return with
    /// `io::ErrorKind::WouldBlock`.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once a readiness event occurs, the method
    /// will continue to return immediately until the readiness event is
    /// consumed by an attempt to read that fails with `WouldBlock` or
    /// `Poll::Pending`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Connect to a peer
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///     socket.connect("127.0.0.1:8081").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be readable
    ///         socket.readable().await?;
    ///
    ///         // The buffer is **not** included in the async task and will
    ///         // only exist on the stack.
    ///         let mut buf = [0; 1024];
    ///
    ///         // Try to recv data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match socket.try_recv(&mut buf) {
    ///             Ok(n) => {
    ///                 println!("GOT {:?}", &buf[..n]);
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e);
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub async fn readable(&self) -> io::Result<()> {
        self.ready(Interest::READABLE).await?;
        Ok(())
    }

    /// Polls for read/receive readiness.
    ///
    /// If the udp stream is not currently ready for receiving, this method will
    /// store a clone of the `Waker` from the provided `Context`. When the udp
    /// socket becomes ready for reading, `Waker::wake` will be called on the
    /// waker.
    ///
    /// Note that on multiple calls to `poll_recv_ready`, `poll_recv` or
    /// `poll_peek`, only the `Waker` from the `Context` passed to the most
    /// recent call is scheduled to receive a wakeup. (However,
    /// `poll_send_ready` retains a second, independent waker.)
    ///
    /// This function is intended for cases where creating and pinning a future
    /// via [`readable`] is not feasible. Where possible, using [`readable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if the udp stream is not ready for reading.
    /// * `Poll::Ready(Ok(()))` if the udp stream is ready for reading.
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    ///
    /// [`readable`]: method@Self::readable
    pub fn poll_recv_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        self.io.registration().poll_read_ready(cx).map_ok(|_| ())
    }

    /// Receives a single datagram message on the socket from the remote address
    /// to which it is connected. On success, returns the number of bytes read.
    ///
    /// The function must be called with valid byte array `buf` of sufficient
    /// size to hold the message bytes. If a message is too long to fit in the
    /// supplied buffer, excess bytes may be discarded.
    ///
    /// The [`connect`] method will connect this socket to a remote address.
    /// This method will fail if the socket is not connected.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `recv` is used as the event in a
    /// [`tokio::select!`](crate::select) statement and some other branch
    /// completes first, it is guaranteed that no messages were received on this
    /// socket.
    ///
    /// [`connect`]: method@Self::connect
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Bind socket
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///     socket.connect("127.0.0.1:8081").await?;
    ///
    ///     let mut buf = vec![0; 10];
    ///     let n = socket.recv(&mut buf).await?;
    ///
    ///     println!("received {} bytes {:?}", n, &buf[..n]);
    ///
    ///     Ok(())
    /// }
    /// ```
    pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
        self.io
            .registration()
            .async_io(Interest::READABLE, || self.io.recv(buf))
            .await
    }

    /// Attempts to receive a single datagram message on the socket from the remote
    /// address to which it is `connect`ed.
    ///
    /// The [`connect`] method will connect this socket to a remote address. This method
    /// resolves to an error if the socket is not connected.
    ///
    /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
    /// `Waker` from the `Context` passed to the most recent call will be scheduled to
    /// receive a wakeup.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if the socket is not ready to read
    /// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    ///
    /// [`connect`]: method@Self::connect
    pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> {
        let n = ready!(self.io.registration().poll_read_io(cx, || {
            // Safety: will not read the maybe uninitialized bytes.
            let b = unsafe {
                &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
            };

            self.io.recv(b)
        }))?;

        // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
        unsafe {
            buf.assume_init(n);
        }
        buf.advance(n);
        Poll::Ready(Ok(()))
    }

    /// Tries to receive a single datagram message on the socket from the remote
    /// address to which it is connected. On success, returns the number of
    /// bytes read.
    ///
    /// This method must be called with valid byte array buf of sufficient size
    /// to hold the message bytes. If a message is too long to fit in the
    /// supplied buffer, excess bytes may be discarded.
    ///
    /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
    /// returned. This function is usually paired with `readable()`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Connect to a peer
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///     socket.connect("127.0.0.1:8081").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be readable
    ///         socket.readable().await?;
    ///
    ///         // The buffer is **not** included in the async task and will
    ///         // only exist on the stack.
    ///         let mut buf = [0; 1024];
    ///
    ///         // Try to recv data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match socket.try_recv(&mut buf) {
    ///             Ok(n) => {
    ///                 println!("GOT {:?}", &buf[..n]);
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e);
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> {
        self.io
            .registration()
            .try_io(Interest::READABLE, || self.io.recv(buf))
    }

    cfg_io_util! {
        /// Tries to receive data from the stream into the provided buffer, advancing the
        /// buffer's internal cursor, returning how many bytes were read.
        ///
        /// This method must be called with valid byte array buf of sufficient size
        /// to hold the message bytes. If a message is too long to fit in the
        /// supplied buffer, excess bytes may be discarded.
        ///
        /// This method can be used even if `buf` is uninitialized.
        ///
        /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
        /// returned. This function is usually paired with `readable()`.
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::net::UdpSocket;
        /// use std::io;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     // Connect to a peer
        ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
        ///     socket.connect("127.0.0.1:8081").await?;
        ///
        ///     loop {
        ///         // Wait for the socket to be readable
        ///         socket.readable().await?;
        ///
        ///         let mut buf = Vec::with_capacity(1024);
        ///
        ///         // Try to recv data, this may still fail with `WouldBlock`
        ///         // if the readiness event is a false positive.
        ///         match socket.try_recv_buf(&mut buf) {
        ///             Ok(n) => {
        ///                 println!("GOT {:?}", &buf[..n]);
        ///                 break;
        ///             }
        ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
        ///                 continue;
        ///             }
        ///             Err(e) => {
        ///                 return Err(e);
        ///             }
        ///         }
        ///     }
        ///
        ///     Ok(())
        /// }
        /// ```
        pub fn try_recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
            self.io.registration().try_io(Interest::READABLE, || {
                let dst = buf.chunk_mut();
                let dst =
                    unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };

                let n = (*self.io).recv(dst)?;

                // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the
                // buffer.
                unsafe {
                    buf.advance_mut(n);
                }

                Ok(n)
            })
        }

        /// Receives a single datagram message on the socket from the remote address
        /// to which it is connected, advancing the buffer's internal cursor,
        /// returning how many bytes were read.
        ///
        /// This method must be called with valid byte array buf of sufficient size
        /// to hold the message bytes. If a message is too long to fit in the
        /// supplied buffer, excess bytes may be discarded.
        ///
        /// This method can be used even if `buf` is uninitialized.
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::net::UdpSocket;
        /// use std::io;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     // Connect to a peer
        ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
        ///     socket.connect("127.0.0.1:8081").await?;
        ///
        ///     let mut buf = Vec::with_capacity(512);
        ///     let len = socket.recv_buf(&mut buf).await?;
        ///
        ///     println!("received {} bytes {:?}", len, &buf[..len]);
        ///
        ///     Ok(())
        /// }
        /// ```
        pub async fn recv_buf<B: BufMut>(&self, buf: &mut B) -> io::Result<usize> {
            self.io.registration().async_io(Interest::READABLE, || {
                let dst = buf.chunk_mut();
                let dst =
                    unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };

                let n = (*self.io).recv(dst)?;

                // Safety: We trust `UdpSocket::recv` to have filled up `n` bytes in the
                // buffer.
                unsafe {
                    buf.advance_mut(n);
                }

                Ok(n)
            }).await
        }

        /// Tries to receive a single datagram message on the socket. On success,
        /// returns the number of bytes read and the origin.
        ///
        /// This method must be called with valid byte array buf of sufficient size
        /// to hold the message bytes. If a message is too long to fit in the
        /// supplied buffer, excess bytes may be discarded.
        ///
        /// This method can be used even if `buf` is uninitialized.
        ///
        /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
        /// returned. This function is usually paired with `readable()`.
        ///
        /// # Notes
        /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
        /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
        /// Because UDP is stateless and does not validate the origin of a packet,
        /// the attacker does not need to be able to intercept traffic in order to interfere.
        /// It is important to be aware of this when designing your application-level protocol.
        ///
        /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::net::UdpSocket;
        /// use std::io;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     // Connect to a peer
        ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
        ///
        ///     loop {
        ///         // Wait for the socket to be readable
        ///         socket.readable().await?;
        ///
        ///         let mut buf = Vec::with_capacity(1024);
        ///
        ///         // Try to recv data, this may still fail with `WouldBlock`
        ///         // if the readiness event is a false positive.
        ///         match socket.try_recv_buf_from(&mut buf) {
        ///             Ok((n, _addr)) => {
        ///                 println!("GOT {:?}", &buf[..n]);
        ///                 break;
        ///             }
        ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
        ///                 continue;
        ///             }
        ///             Err(e) => {
        ///                 return Err(e);
        ///             }
        ///         }
        ///     }
        ///
        ///     Ok(())
        /// }
        /// ```
        pub fn try_recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> {
            self.io.registration().try_io(Interest::READABLE, || {
                let dst = buf.chunk_mut();
                let dst =
                    unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };

                let (n, addr) = (*self.io).recv_from(dst)?;

                // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the
                // buffer.
                unsafe {
                    buf.advance_mut(n);
                }

                Ok((n, addr))
            })
        }

        /// Receives a single datagram message on the socket, advancing the
        /// buffer's internal cursor, returning how many bytes were read and the origin.
        ///
        /// This method must be called with valid byte array buf of sufficient size
        /// to hold the message bytes. If a message is too long to fit in the
        /// supplied buffer, excess bytes may be discarded.
        ///
        /// This method can be used even if `buf` is uninitialized.
        ///
        /// # Notes
        /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
        /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
        /// Because UDP is stateless and does not validate the origin of a packet,
        /// the attacker does not need to be able to intercept traffic in order to interfere.
        /// It is important to be aware of this when designing your application-level protocol.
        ///
        /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
        ///
        /// # Examples
        ///
        /// ```no_run
        /// use tokio::net::UdpSocket;
        /// use std::io;
        ///
        /// #[tokio::main]
        /// async fn main() -> io::Result<()> {
        ///     // Connect to a peer
        ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
        ///     socket.connect("127.0.0.1:8081").await?;
        ///
        ///     let mut buf = Vec::with_capacity(512);
        ///     let (len, addr) = socket.recv_buf_from(&mut buf).await?;
        ///
        ///     println!("received {:?} bytes from {:?}", len, addr);
        ///
        ///     Ok(())
        /// }
        /// ```
        pub async fn recv_buf_from<B: BufMut>(&self, buf: &mut B) -> io::Result<(usize, SocketAddr)> {
            self.io.registration().async_io(Interest::READABLE, || {
                let dst = buf.chunk_mut();
                let dst =
                    unsafe { &mut *(dst as *mut _ as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) };

                let (n, addr) = (*self.io).recv_from(dst)?;

                // Safety: We trust `UdpSocket::recv_from` to have filled up `n` bytes in the
                // buffer.
                unsafe {
                    buf.advance_mut(n);
                }

                Ok((n,addr))
            }).await
        }
    }

    /// Sends data on the socket to the given address. On success, returns the
    /// number of bytes written.
    ///
    /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its
    /// documentation for concrete examples.
    ///
    /// It is possible for `addr` to yield multiple addresses, but `send_to`
    /// will only send data to the first address yielded by `addr`.
    ///
    /// This will return an error when the IP version of the local socket does
    /// not match that returned from [`ToSocketAddrs`].
    ///
    /// [`ToSocketAddrs`]: crate::net::ToSocketAddrs
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `send_to` is used as the event in a
    /// [`tokio::select!`](crate::select) statement and some other branch
    /// completes first, then it is guaranteed that the message was not sent.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///     let len = socket.send_to(b"hello world", "127.0.0.1:8081").await?;
    ///
    ///     println!("Sent {} bytes", len);
    ///
    ///     Ok(())
    /// }
    /// ```
    pub async fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], target: A) -> io::Result<usize> {
        let mut addrs = to_socket_addrs(target).await?;

        match addrs.next() {
            Some(target) => self.send_to_addr(buf, target).await,
            None => Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "no addresses to send data to",
            )),
        }
    }

    /// Attempts to send data on the socket to a given address.
    ///
    /// Note that on multiple calls to a `poll_*` method in the send direction, only the
    /// `Waker` from the `Context` passed to the most recent call will be scheduled to
    /// receive a wakeup.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if the socket is not ready to write
    /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent.
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    pub fn poll_send_to(
        &self,
        cx: &mut Context<'_>,
        buf: &[u8],
        target: SocketAddr,
    ) -> Poll<io::Result<usize>> {
        self.io
            .registration()
            .poll_write_io(cx, || self.io.send_to(buf, target))
    }

    /// Tries to send data on the socket to the given address, but if the send is
    /// blocked this will return right away.
    ///
    /// This function is usually paired with `writable()`.
    ///
    /// # Returns
    ///
    /// If successful, returns the number of bytes sent
    ///
    /// Users should ensure that when the remote cannot receive, the
    /// [`ErrorKind::WouldBlock`] is properly handled. An error can also occur
    /// if the IP version of the socket does not match that of `target`.
    ///
    /// [`ErrorKind::WouldBlock`]: std::io::ErrorKind::WouldBlock
    ///
    /// # Example
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::error::Error;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///
    ///     let dst = "127.0.0.1:8081".parse()?;
    ///
    ///     loop {
    ///         socket.writable().await?;
    ///
    ///         match socket.try_send_to(&b"hello world"[..], dst) {
    ///             Ok(sent) => {
    ///                 println!("sent {} bytes", sent);
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 // Writable false positive.
    ///                 continue;
    ///             }
    ///             Err(e) => return Err(e.into()),
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn try_send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> {
        self.io
            .registration()
            .try_io(Interest::WRITABLE, || self.io.send_to(buf, target))
    }

    async fn send_to_addr(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> {
        self.io
            .registration()
            .async_io(Interest::WRITABLE, || self.io.send_to(buf, target))
            .await
    }

    /// Receives a single datagram message on the socket. On success, returns
    /// the number of bytes read and the origin.
    ///
    /// The function must be called with valid byte array `buf` of sufficient
    /// size to hold the message bytes. If a message is too long to fit in the
    /// supplied buffer, excess bytes may be discarded.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `recv_from` is used as the event in a
    /// [`tokio::select!`](crate::select) statement and some other branch
    /// completes first, it is guaranteed that no messages were received on this
    /// socket.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///
    ///     let mut buf = vec![0u8; 32];
    ///     let (len, addr) = socket.recv_from(&mut buf).await?;
    ///
    ///     println!("received {:?} bytes from {:?}", len, addr);
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// # Notes
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.io
            .registration()
            .async_io(Interest::READABLE, || self.io.recv_from(buf))
            .await
    }

    /// Attempts to receive a single datagram on the socket.
    ///
    /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
    /// `Waker` from the `Context` passed to the most recent call will be scheduled to
    /// receive a wakeup.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if the socket is not ready to read
    /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    ///
    /// # Notes
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub fn poll_recv_from(
        &self,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<SocketAddr>> {
        let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || {
            // Safety: will not read the maybe uninitialized bytes.
            let b = unsafe {
                &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
            };

            self.io.recv_from(b)
        }))?;

        // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
        unsafe {
            buf.assume_init(n);
        }
        buf.advance(n);
        Poll::Ready(Ok(addr))
    }

    /// Tries to receive a single datagram message on the socket. On success,
    /// returns the number of bytes read and the origin.
    ///
    /// This method must be called with valid byte array buf of sufficient size
    /// to hold the message bytes. If a message is too long to fit in the
    /// supplied buffer, excess bytes may be discarded.
    ///
    /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
    /// returned. This function is usually paired with `readable()`.
    ///
    /// # Notes
    ///
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Connect to a peer
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be readable
    ///         socket.readable().await?;
    ///
    ///         // The buffer is **not** included in the async task and will
    ///         // only exist on the stack.
    ///         let mut buf = [0; 1024];
    ///
    ///         // Try to recv data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match socket.try_recv_from(&mut buf) {
    ///             Ok((n, _addr)) => {
    ///                 println!("GOT {:?}", &buf[..n]);
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e);
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.io
            .registration()
            .try_io(Interest::READABLE, || self.io.recv_from(buf))
    }

    /// Tries to read or write from the socket using a user-provided IO operation.
    ///
    /// If the socket is ready, the provided closure is called. The closure
    /// should attempt to perform IO operation on the socket by manually
    /// calling the appropriate syscall. If the operation fails because the
    /// socket is not actually ready, then the closure should return a
    /// `WouldBlock` error and the readiness flag is cleared. The return value
    /// of the closure is then returned by `try_io`.
    ///
    /// If the socket is not ready, then the closure is not called
    /// and a `WouldBlock` error is returned.
    ///
    /// The closure should only return a `WouldBlock` error if it has performed
    /// an IO operation on the socket that failed due to the socket not being
    /// ready. Returning a `WouldBlock` error in any other situation will
    /// incorrectly clear the readiness flag, which can cause the socket to
    /// behave incorrectly.
    ///
    /// The closure should not perform the IO operation using any of the methods
    /// defined on the Tokio `UdpSocket` type, as this will mess with the
    /// readiness flag and can cause the socket to behave incorrectly.
    ///
    /// This method is not intended to be used with combined interests.
    /// The closure should perform only one type of IO operation, so it should not
    /// require more than one ready state. This method may panic or sleep forever
    /// if it is called with a combined interest.
    ///
    /// Usually, [`readable()`], [`writable()`] or [`ready()`] is used with this function.
    ///
    /// [`readable()`]: UdpSocket::readable()
    /// [`writable()`]: UdpSocket::writable()
    /// [`ready()`]: UdpSocket::ready()
    pub fn try_io<R>(
        &self,
        interest: Interest,
        f: impl FnOnce() -> io::Result<R>,
    ) -> io::Result<R> {
        self.io
            .registration()
            .try_io(interest, || self.io.try_io(f))
    }

    /// Reads or writes from the socket using a user-provided IO operation.
    ///
    /// The readiness of the socket is awaited and when the socket is ready,
    /// the provided closure is called. The closure should attempt to perform
    /// IO operation on the socket by manually calling the appropriate syscall.
    /// If the operation fails because the socket is not actually ready,
    /// then the closure should return a `WouldBlock` error. In such case the
    /// readiness flag is cleared and the socket readiness is awaited again.
    /// This loop is repeated until the closure returns an `Ok` or an error
    /// other than `WouldBlock`.
    ///
    /// The closure should only return a `WouldBlock` error if it has performed
    /// an IO operation on the socket that failed due to the socket not being
    /// ready. Returning a `WouldBlock` error in any other situation will
    /// incorrectly clear the readiness flag, which can cause the socket to
    /// behave incorrectly.
    ///
    /// The closure should not perform the IO operation using any of the methods
    /// defined on the Tokio `UdpSocket` type, as this will mess with the
    /// readiness flag and can cause the socket to behave incorrectly.
    ///
    /// This method is not intended to be used with combined interests.
    /// The closure should perform only one type of IO operation, so it should not
    /// require more than one ready state. This method may panic or sleep forever
    /// if it is called with a combined interest.
    pub async fn async_io<R>(
        &self,
        interest: Interest,
        mut f: impl FnMut() -> io::Result<R>,
    ) -> io::Result<R> {
        self.io
            .registration()
            .async_io(interest, || self.io.try_io(&mut f))
            .await
    }

    /// Receives data from the socket, without removing it from the input queue.
    /// On success, returns the number of bytes read and the address from whence
    /// the data came.
    ///
    /// # Notes
    ///
    /// On Windows, if the data is larger than the buffer specified, the buffer
    /// is filled with the first part of the data, and peek_from returns the error
    /// WSAEMSGSIZE(10040). The excess data is lost.
    /// Make sure to always use a sufficiently large buffer to hold the
    /// maximum UDP packet size, which can be up to 65536 bytes in size.
    ///
    /// MacOS will return an error if you pass a zero-sized buffer.
    ///
    /// If you're merely interested in learning the sender of the data at the head of the queue,
    /// try [`peek_sender`].
    ///
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let socket = UdpSocket::bind("127.0.0.1:8080").await?;
    ///
    ///     let mut buf = vec![0u8; 32];
    ///     let (len, addr) = socket.peek_from(&mut buf).await?;
    ///
    ///     println!("peeked {:?} bytes from {:?}", len, addr);
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// [`peek_sender`]: method@Self::peek_sender
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.io
            .registration()
            .async_io(Interest::READABLE, || self.io.peek_from(buf))
            .await
    }

    /// Receives data from the socket, without removing it from the input queue.
    /// On success, returns the sending address of the datagram.
    ///
    /// # Notes
    ///
    /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
    /// `Waker` from the `Context` passed to the most recent call will be scheduled to
    /// receive a wakeup
    ///
    /// On Windows, if the data is larger than the buffer specified, the buffer
    /// is filled with the first part of the data, and peek returns the error
    /// WSAEMSGSIZE(10040). The excess data is lost.
    /// Make sure to always use a sufficiently large buffer to hold the
    /// maximum UDP packet size, which can be up to 65536 bytes in size.
    ///
    /// MacOS will return an error if you pass a zero-sized buffer.
    ///
    /// If you're merely interested in learning the sender of the data at the head of the queue,
    /// try [`poll_peek_sender`].
    ///
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if the socket is not ready to read
    /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    ///
    /// [`poll_peek_sender`]: method@Self::poll_peek_sender
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub fn poll_peek_from(
        &self,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<SocketAddr>> {
        let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || {
            // Safety: will not read the maybe uninitialized bytes.
            let b = unsafe {
                &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8])
            };

            self.io.peek_from(b)
        }))?;

        // Safety: We trust `recv` to have filled up `n` bytes in the buffer.
        unsafe {
            buf.assume_init(n);
        }
        buf.advance(n);
        Poll::Ready(Ok(addr))
    }

    /// Tries to receive data on the socket without removing it from the input queue.
    /// On success, returns the number of bytes read and the sending address of the
    /// datagram.
    ///
    /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
    /// returned. This function is usually paired with `readable()`.
    ///
    /// # Notes
    ///
    /// On Windows, if the data is larger than the buffer specified, the buffer
    /// is filled with the first part of the data, and peek returns the error
    /// WSAEMSGSIZE(10040). The excess data is lost.
    /// Make sure to always use a sufficiently large buffer to hold the
    /// maximum UDP packet size, which can be up to 65536 bytes in size.
    ///
    /// MacOS will return an error if you pass a zero-sized buffer.
    ///
    /// If you're merely interested in learning the sender of the data at the head of the queue,
    /// try [`try_peek_sender`].
    ///
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// [`try_peek_sender`]: method@Self::try_peek_sender
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub fn try_peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.io
            .registration()
            .try_io(Interest::READABLE, || self.io.peek_from(buf))
    }

    /// Retrieve the sender of the data at the head of the input queue, waiting if empty.
    ///
    /// This is equivalent to calling [`peek_from`] with a zero-sized buffer,
    /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS.
    ///
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// [`peek_from`]: method@Self::peek_from
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub async fn peek_sender(&self) -> io::Result<SocketAddr> {
        self.io
            .registration()
            .async_io(Interest::READABLE, || self.peek_sender_inner())
            .await
    }

    /// Retrieve the sender of the data at the head of the input queue,
    /// scheduling a wakeup if empty.
    ///
    /// This is equivalent to calling [`poll_peek_from`] with a zero-sized buffer,
    /// but suppresses the `WSAEMSGSIZE` error on Windows and the "invalid argument" error on macOS.
    ///
    /// # Notes
    ///
    /// Note that on multiple calls to a `poll_*` method in the recv direction, only the
    /// `Waker` from the `Context` passed to the most recent call will be scheduled to
    /// receive a wakeup.
    ///
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// [`poll_peek_from`]: method@Self::poll_peek_from
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub fn poll_peek_sender(&self, cx: &mut Context<'_>) -> Poll<io::Result<SocketAddr>> {
        self.io
            .registration()
            .poll_read_io(cx, || self.peek_sender_inner())
    }

    /// Try to retrieve the sender of the data at the head of the input queue.
    ///
    /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is
    /// returned. This function is usually paired with `readable()`.
    ///
    /// Note that the socket address **cannot** be implicitly trusted, because it is relatively
    /// trivial to send a UDP datagram with a spoofed origin in a [packet injection attack].
    /// Because UDP is stateless and does not validate the origin of a packet,
    /// the attacker does not need to be able to intercept traffic in order to interfere.
    /// It is important to be aware of this when designing your application-level protocol.
    ///
    /// [packet injection attack]: https://en.wikipedia.org/wiki/Packet_injection
    pub fn try_peek_sender(&self) -> io::Result<SocketAddr> {
        self.io
            .registration()
            .try_io(Interest::READABLE, || self.peek_sender_inner())
    }

    #[inline]
    fn peek_sender_inner(&self) -> io::Result<SocketAddr> {
        self.io.try_io(|| {
            self.as_socket()
                .peek_sender()?
                // May be `None` if the platform doesn't populate the sender for some reason.
                // In testing, that only occurred on macOS if you pass a zero-sized buffer,
                // but the implementation of `Socket::peek_sender()` covers that.
                .as_socket()
                .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "sender not available"))
        })
    }

    /// Gets the value of the `SO_BROADCAST` option for this socket.
    ///
    /// For more information about this option, see [`set_broadcast`].
    ///
    /// [`set_broadcast`]: method@Self::set_broadcast
    pub fn broadcast(&self) -> io::Result<bool> {
        self.io.broadcast()
    }

    /// Sets the value of the `SO_BROADCAST` option for this socket.
    ///
    /// When enabled, this socket is allowed to send packets to a broadcast
    /// address.
    pub fn set_broadcast(&self, on: bool) -> io::Result<()> {
        self.io.set_broadcast(on)
    }

    /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket.
    ///
    /// For more information about this option, see [`set_multicast_loop_v4`].
    ///
    /// [`set_multicast_loop_v4`]: method@Self::set_multicast_loop_v4
    pub fn multicast_loop_v4(&self) -> io::Result<bool> {
        self.io.multicast_loop_v4()
    }

    /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket.
    ///
    /// If enabled, multicast packets will be looped back to the local socket.
    ///
    /// # Note
    ///
    /// This may not have any affect on IPv6 sockets.
    pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> {
        self.io.set_multicast_loop_v4(on)
    }

    /// Gets the value of the `IP_MULTICAST_TTL` option for this socket.
    ///
    /// For more information about this option, see [`set_multicast_ttl_v4`].
    ///
    /// [`set_multicast_ttl_v4`]: method@Self::set_multicast_ttl_v4
    pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
        self.io.multicast_ttl_v4()
    }

    /// Sets the value of the `IP_MULTICAST_TTL` option for this socket.
    ///
    /// Indicates the time-to-live value of outgoing multicast packets for
    /// this socket. The default value is 1 which means that multicast packets
    /// don't leave the local network unless explicitly requested.
    ///
    /// # Note
    ///
    /// This may not have any affect on IPv6 sockets.
    pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> {
        self.io.set_multicast_ttl_v4(ttl)
    }

    /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
    ///
    /// For more information about this option, see [`set_multicast_loop_v6`].
    ///
    /// [`set_multicast_loop_v6`]: method@Self::set_multicast_loop_v6
    pub fn multicast_loop_v6(&self) -> io::Result<bool> {
        self.io.multicast_loop_v6()
    }

    /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
    ///
    /// Controls whether this socket sees the multicast packets it sends itself.
    ///
    /// # Note
    ///
    /// This may not have any affect on IPv4 sockets.
    pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> {
        self.io.set_multicast_loop_v6(on)
    }

    /// Gets the value of the `IP_TTL` option for this socket.
    ///
    /// For more information about this option, see [`set_ttl`].
    ///
    /// [`set_ttl`]: method@Self::set_ttl
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// # use std::io;
    ///
    /// # async fn dox() -> io::Result<()> {
    /// let sock = UdpSocket::bind("127.0.0.1:8080").await?;
    ///
    /// println!("{:?}", sock.ttl()?);
    /// # Ok(())
    /// # }
    /// ```
    pub fn ttl(&self) -> io::Result<u32> {
        self.io.ttl()
    }

    /// Sets the value for the `IP_TTL` option on this socket.
    ///
    /// This value sets the time-to-live field that is used in every packet sent
    /// from this socket.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::UdpSocket;
    /// # use std::io;
    ///
    /// # async fn dox() -> io::Result<()> {
    /// let sock = UdpSocket::bind("127.0.0.1:8080").await?;
    /// sock.set_ttl(60)?;
    ///
    /// # Ok(())
    /// # }
    /// ```
    pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
        self.io.set_ttl(ttl)
    }

    /// Gets the value of the `IP_TOS` option for this socket.
    ///
    /// For more information about this option, see [`set_tos`].
    ///
    /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or
    /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options)
    ///
    /// [`set_tos`]: Self::set_tos
    // https://docs.rs/socket2/0.4.2/src/socket2/socket.rs.html#1178
    #[cfg(not(any(
        target_os = "fuchsia",
        target_os = "redox",
        target_os = "solaris",
        target_os = "illumos",
    )))]
    #[cfg_attr(
        docsrs,
        doc(cfg(not(any(
            target_os = "fuchsia",
            target_os = "redox",
            target_os = "solaris",
            target_os = "illumos",
        ))))
    )]
    pub fn tos(&self) -> io::Result<u32> {
        self.as_socket().tos()
    }

    /// Sets the value for the `IP_TOS` option on this socket.
    ///
    /// This value sets the type-of-service field that is used in every packet
    /// sent from this socket.
    ///
    /// **NOTE:** On Windows, `IP_TOS` is only supported on [Windows 8+ or
    /// Windows Server 2012+.](https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-ip-socket-options)
    // https://docs.rs/socket2/0.4.2/src/socket2/socket.rs.html#1178
    #[cfg(not(any(
        target_os = "fuchsia",
        target_os = "redox",
        target_os = "solaris",
        target_os = "illumos",
    )))]
    #[cfg_attr(
        docsrs,
        doc(cfg(not(any(
            target_os = "fuchsia",
            target_os = "redox",
            target_os = "solaris",
            target_os = "illumos",
        ))))
    )]
    pub fn set_tos(&self, tos: u32) -> io::Result<()> {
        self.as_socket().set_tos(tos)
    }

    /// Gets the value for the `SO_BINDTODEVICE` option on this socket
    ///
    /// This value gets the socket-bound device's interface name.
    #[cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux",))]
    #[cfg_attr(
        docsrs,
        doc(cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux",)))
    )]
    pub fn device(&self) -> io::Result<Option<Vec<u8>>> {
        self.as_socket().device()
    }

    /// Sets the value for the `SO_BINDTODEVICE` option on this socket
    ///
    /// If a socket is bound to an interface, only packets received from that
    /// particular interface are processed by the socket. Note that this only
    /// works for some socket types, particularly `AF_INET` sockets.
    ///
    /// If `interface` is `None` or an empty string it removes the binding.
    #[cfg(all(any(target_os = "android", target_os = "fuchsia", target_os = "linux")))]
    #[cfg_attr(
        docsrs,
        doc(cfg(all(any(target_os = "android", target_os = "fuchsia", target_os = "linux"))))
    )]
    pub fn bind_device(&self, interface: Option<&[u8]>) -> io::Result<()> {
        self.as_socket().bind_device(interface)
    }

    /// Executes an operation of the `IP_ADD_MEMBERSHIP` type.
    ///
    /// This function specifies a new multicast group for this socket to join.
    /// The address must be a valid multicast address, and `interface` is the
    /// address of the local interface with which the system should join the
    /// multicast group. If it's equal to `INADDR_ANY` then an appropriate
    /// interface is chosen by the system.
    pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
        self.io.join_multicast_v4(&multiaddr, &interface)
    }

    /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type.
    ///
    /// This function specifies a new multicast group for this socket to join.
    /// The address must be a valid multicast address, and `interface` is the
    /// index of the interface to join/leave (or 0 to indicate any interface).
    pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
        self.io.join_multicast_v6(multiaddr, interface)
    }

    /// Executes an operation of the `IP_DROP_MEMBERSHIP` type.
    ///
    /// For more information about this option, see [`join_multicast_v4`].
    ///
    /// [`join_multicast_v4`]: method@Self::join_multicast_v4
    pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
        self.io.leave_multicast_v4(&multiaddr, &interface)
    }

    /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type.
    ///
    /// For more information about this option, see [`join_multicast_v6`].
    ///
    /// [`join_multicast_v6`]: method@Self::join_multicast_v6
    pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
        self.io.leave_multicast_v6(multiaddr, interface)
    }

    /// Returns the value of the `SO_ERROR` option.
    ///
    /// # Examples
    /// ```
    /// use tokio::net::UdpSocket;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     // Create a socket
    ///     let socket = UdpSocket::bind("0.0.0.0:8080").await?;
    ///
    ///     if let Ok(Some(err)) = socket.take_error() {
    ///         println!("Got error: {:?}", err);
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn take_error(&self) -> io::Result<Option<io::Error>> {
        self.io.take_error()
    }
}

impl TryFrom<std::net::UdpSocket> for UdpSocket {
    type Error = io::Error;

    /// Consumes stream, returning the tokio I/O object.
    ///
    /// This is equivalent to
    /// [`UdpSocket::from_std(stream)`](UdpSocket::from_std).
    fn try_from(stream: std::net::UdpSocket) -> Result<Self, Self::Error> {
        Self::from_std(stream)
    }
}

impl fmt::Debug for UdpSocket {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.io.fmt(f)
    }
}

#[cfg(unix)]
mod sys {
    use super::UdpSocket;
    use std::os::unix::prelude::*;

    impl AsRawFd for UdpSocket {
        fn as_raw_fd(&self) -> RawFd {
            self.io.as_raw_fd()
        }
    }

    #[cfg(not(tokio_no_as_fd))]
    impl AsFd for UdpSocket {
        fn as_fd(&self) -> BorrowedFd<'_> {
            unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) }
        }
    }
}

cfg_windows! {
    use crate::os::windows::io::{AsRawSocket, RawSocket};
    #[cfg(not(tokio_no_as_fd))]
    use crate::os::windows::io::{AsSocket, BorrowedSocket};

    impl AsRawSocket for UdpSocket {
        fn as_raw_socket(&self) -> RawSocket {
            self.io.as_raw_socket()
        }
    }

    #[cfg(not(tokio_no_as_fd))]
    impl AsSocket for UdpSocket {
        fn as_socket(&self) -> BorrowedSocket<'_> {
            unsafe { BorrowedSocket::borrow_raw(self.as_raw_socket()) }
        }
    }
}