1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
use core::convert::TryInto;
use crate::common::BytesPerPixel;
/// The byte level filter applied to scanlines to prepare them for compression.
///
/// Compression in general benefits from repetitive data. The filter is a content-aware method of
/// compressing the range of occurring byte values to help the compression algorithm. Note that
/// this does not operate on pixels but on raw bytes of a scanline.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum FilterType {
NoFilter = 0,
Sub = 1,
Up = 2,
Avg = 3,
Paeth = 4,
}
impl Default for FilterType {
fn default() -> Self {
FilterType::Sub
}
}
impl FilterType {
/// u8 -> Self. Temporary solution until Rust provides a canonical one.
pub fn from_u8(n: u8) -> Option<FilterType> {
match n {
0 => Some(FilterType::NoFilter),
1 => Some(FilterType::Sub),
2 => Some(FilterType::Up),
3 => Some(FilterType::Avg),
4 => Some(FilterType::Paeth),
_ => None,
}
}
}
/// The filtering method for preprocessing scanline data before compression.
///
/// Adaptive filtering performs additional computation in an attempt to maximize
/// the compression of the data. [`NonAdaptive`] filtering is the default.
///
/// [`NonAdaptive`]: enum.AdaptiveFilterType.html#variant.NonAdaptive
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum AdaptiveFilterType {
Adaptive,
NonAdaptive,
}
impl Default for AdaptiveFilterType {
fn default() -> Self {
AdaptiveFilterType::NonAdaptive
}
}
fn filter_paeth_decode(a: u8, b: u8, c: u8) -> u8 {
// Decoding seems to optimize better with this algorithm
let pa = (i16::from(b) - i16::from(c)).abs();
let pb = (i16::from(a) - i16::from(c)).abs();
let pc = ((i16::from(a) - i16::from(c)) + (i16::from(b) - i16::from(c))).abs();
let mut out = a;
let mut min = pa;
if pb < min {
min = pb;
out = b;
}
if pc < min {
out = c;
}
out
}
fn filter_paeth(a: u8, b: u8, c: u8) -> u8 {
// This is an optimized version of the paeth filter from the PNG specification, proposed by
// Luca Versari for [FPNGE](https://www.lucaversari.it/FJXL_and_FPNGE.pdf). It operates
// entirely on unsigned 8-bit quantities, making it more conducive to vectorization.
//
// p = a + b - c
// pa = |p - a| = |a + b - c - a| = |b - c| = max(b, c) - min(b, c)
// pb = |p - b| = |a + b - c - b| = |a - c| = max(a, c) - min(a, c)
// pc = |p - c| = |a + b - c - c| = |(b - c) + (a - c)| = ...
//
// Further optimizing the calculation of `pc` a bit tricker. However, notice that:
//
// a > c && b > c
// ==> (a - c) > 0 && (b - c) > 0
// ==> pc > (a - c) && pc > (b - c)
// ==> pc > |a - c| && pc > |b - c|
// ==> pc > pb && pc > pa
//
// Meaning that if `c` is smaller than `a` and `b`, the value of `pc` is irrelevant. Similar
// reasoning applies if `c` is larger than the other two inputs. Assuming that `c >= b` and
// `c <= b` or vice versa:
//
// pc = ||b - c| - |a - c|| = |pa - pb| = max(pa, pb) - min(pa, pb)
//
let pa = b.max(c) - c.min(b);
let pb = a.max(c) - c.min(a);
let pc = if (a < c) == (c < b) {
pa.max(pb) - pa.min(pb)
} else {
255
};
if pa <= pb && pa <= pc {
a
} else if pb <= pc {
b
} else {
c
}
}
pub(crate) fn unfilter(
filter: FilterType,
tbpp: BytesPerPixel,
previous: &[u8],
current: &mut [u8],
) {
use self::FilterType::*;
// [2023/01 @okaneco] - Notes on optimizing decoding filters
//
// Links:
// [PR]: https://github.com/image-rs/image-png/pull/382
// [SWAR]: http://aggregate.org/SWAR/over.html
// [AVG]: http://aggregate.org/MAGIC/#Average%20of%20Integers
//
// #382 heavily refactored and optimized the following filters making the
// implementation nonobvious. These comments function as a summary of that
// PR with an explanation of the choices made below.
//
// #382 originally started with trying to optimize using a technique called
// SWAR, SIMD Within a Register. SWAR uses regular integer types like `u32`
// and `u64` as SIMD registers to perform vertical operations in parallel,
// usually involving bit-twiddling. This allowed each `BytesPerPixel` (bpp)
// pixel to be decoded in parallel: 3bpp and 4bpp in a `u32`, 6bpp and 8pp
// in a `u64`. The `Sub` filter looked like the following code block, `Avg`
// was similar but used a bitwise average method from [AVG]:
// ```
// // See "Unpartitioned Operations With Correction Code" from [SWAR]
// fn swar_add_u32(x: u32, y: u32) -> u32 {
// // 7-bit addition so there's no carry over the most significant bit
// let n = (x & 0x7f7f7f7f) + (y & 0x7f7f7f7f); // 0x7F = 0b_0111_1111
// // 1-bit parity/XOR addition to fill in the missing MSB
// n ^ (x ^ y) & 0x80808080 // 0x80 = 0b_1000_0000
// }
//
// let mut prev =
// u32::from_ne_bytes([current[0], current[1], current[2], current[3]]);
// for chunk in current[4..].chunks_exact_mut(4) {
// let cur = u32::from_ne_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
// let new_chunk = swar_add_u32(cur, prev);
// chunk.copy_from_slice(&new_chunk.to_ne_bytes());
// prev = new_chunk;
// }
// ```
// While this provided a measurable increase, @fintelia found that this idea
// could be taken even further by unrolling the chunks component-wise and
// avoiding unnecessary byte-shuffling by using byte arrays instead of
// `u32::from|to_ne_bytes`. The bitwise operations were no longer necessary
// so they were reverted to their obvious arithmetic equivalent. Lastly,
// `TryInto` was used instead of `copy_from_slice`. The `Sub` code now
// looked like this (with asserts to remove `0..bpp` bounds checks):
// ```
// assert!(len > 3);
// let mut prev = [current[0], current[1], current[2], current[3]];
// for chunk in current[4..].chunks_exact_mut(4) {
// let new_chunk = [
// chunk[0].wrapping_add(prev[0]),
// chunk[1].wrapping_add(prev[1]),
// chunk[2].wrapping_add(prev[2]),
// chunk[3].wrapping_add(prev[3]),
// ];
// *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
// prev = new_chunk;
// }
// ```
// The compiler was able to optimize the code to be even faster and this
// method even sped up Paeth filtering! Assertions were experimentally
// added within loop bodies which produced better instructions but no
// difference in speed. Finally, the code was refactored to remove manual
// slicing and start the previous pixel chunks with arrays of `[0; N]`.
// ```
// let mut prev = [0; 4];
// for chunk in current.chunks_exact_mut(4) {
// let new_chunk = [
// chunk[0].wrapping_add(prev[0]),
// chunk[1].wrapping_add(prev[1]),
// chunk[2].wrapping_add(prev[2]),
// chunk[3].wrapping_add(prev[3]),
// ];
// *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
// prev = new_chunk;
// }
// ```
// While we're not manually bit-twiddling anymore, a possible takeaway from
// this is to "think in SWAR" when dealing with small byte arrays. Unrolling
// array operations and performing them component-wise may unlock previously
// unavailable optimizations from the compiler, even when using the
// `chunks_exact` methods for their potential auto-vectorization benefits.
match filter {
NoFilter => {}
Sub => match tbpp {
BytesPerPixel::One => {
current.iter_mut().reduce(|&mut prev, curr| {
*curr = curr.wrapping_add(prev);
curr
});
}
BytesPerPixel::Two => {
let mut prev = [0; 2];
for chunk in current.chunks_exact_mut(2) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
];
*TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Three => {
let mut prev = [0; 3];
for chunk in current.chunks_exact_mut(3) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
];
*TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Four => {
let mut prev = [0; 4];
for chunk in current.chunks_exact_mut(4) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
chunk[3].wrapping_add(prev[3]),
];
*TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Six => {
let mut prev = [0; 6];
for chunk in current.chunks_exact_mut(6) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
chunk[3].wrapping_add(prev[3]),
chunk[4].wrapping_add(prev[4]),
chunk[5].wrapping_add(prev[5]),
];
*TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Eight => {
let mut prev = [0; 8];
for chunk in current.chunks_exact_mut(8) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
chunk[3].wrapping_add(prev[3]),
chunk[4].wrapping_add(prev[4]),
chunk[5].wrapping_add(prev[5]),
chunk[6].wrapping_add(prev[6]),
chunk[7].wrapping_add(prev[7]),
];
*TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
},
Up => {
for (curr, &above) in current.iter_mut().zip(previous) {
*curr = curr.wrapping_add(above);
}
}
Avg => match tbpp {
BytesPerPixel::One => {
let mut lprev = [0; 1];
for (chunk, above) in current.chunks_exact_mut(1).zip(previous.chunks_exact(1)) {
let new_chunk =
[chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8)];
*TryInto::<&mut [u8; 1]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Two => {
let mut lprev = [0; 2];
for (chunk, above) in current.chunks_exact_mut(2).zip(previous.chunks_exact(2)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Three => {
let mut lprev = [0; 3];
for (chunk, above) in current.chunks_exact_mut(3).zip(previous.chunks_exact(3)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Four => {
let mut lprev = [0; 4];
for (chunk, above) in current.chunks_exact_mut(4).zip(previous.chunks_exact(4)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Six => {
let mut lprev = [0; 6];
for (chunk, above) in current.chunks_exact_mut(6).zip(previous.chunks_exact(6)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
chunk[4].wrapping_add(((above[4] as u16 + lprev[4] as u16) / 2) as u8),
chunk[5].wrapping_add(((above[5] as u16 + lprev[5] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Eight => {
let mut lprev = [0; 8];
for (chunk, above) in current.chunks_exact_mut(8).zip(previous.chunks_exact(8)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
chunk[4].wrapping_add(((above[4] as u16 + lprev[4] as u16) / 2) as u8),
chunk[5].wrapping_add(((above[5] as u16 + lprev[5] as u16) / 2) as u8),
chunk[6].wrapping_add(((above[6] as u16 + lprev[6] as u16) / 2) as u8),
chunk[7].wrapping_add(((above[7] as u16 + lprev[7] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
},
Paeth => {
// Paeth filter pixels:
// C B D
// A X
match tbpp {
BytesPerPixel::One => {
let mut a_bpp = [0; 1];
let mut c_bpp = [0; 1];
for (chunk, b_bpp) in current.chunks_exact_mut(1).zip(previous.chunks_exact(1))
{
let new_chunk = [chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0]))];
*TryInto::<&mut [u8; 1]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
BytesPerPixel::Two => {
let mut a_bpp = [0; 2];
let mut c_bpp = [0; 2];
for (chunk, b_bpp) in current.chunks_exact_mut(2).zip(previous.chunks_exact(2))
{
let new_chunk = [
chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
chunk[1]
.wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
];
*TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
BytesPerPixel::Three => {
let mut a_bpp = [0; 3];
let mut c_bpp = [0; 3];
for (chunk, b_bpp) in current.chunks_exact_mut(3).zip(previous.chunks_exact(3))
{
let new_chunk = [
chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
chunk[1]
.wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
chunk[2]
.wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
];
*TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
BytesPerPixel::Four => {
let mut a_bpp = [0; 4];
let mut c_bpp = [0; 4];
for (chunk, b_bpp) in current.chunks_exact_mut(4).zip(previous.chunks_exact(4))
{
let new_chunk = [
chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
chunk[1]
.wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
chunk[2]
.wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
chunk[3]
.wrapping_add(filter_paeth_decode(a_bpp[3], b_bpp[3], c_bpp[3])),
];
*TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
BytesPerPixel::Six => {
let mut a_bpp = [0; 6];
let mut c_bpp = [0; 6];
for (chunk, b_bpp) in current.chunks_exact_mut(6).zip(previous.chunks_exact(6))
{
let new_chunk = [
chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
chunk[1]
.wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
chunk[2]
.wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
chunk[3]
.wrapping_add(filter_paeth_decode(a_bpp[3], b_bpp[3], c_bpp[3])),
chunk[4]
.wrapping_add(filter_paeth_decode(a_bpp[4], b_bpp[4], c_bpp[4])),
chunk[5]
.wrapping_add(filter_paeth_decode(a_bpp[5], b_bpp[5], c_bpp[5])),
];
*TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
BytesPerPixel::Eight => {
let mut a_bpp = [0; 8];
let mut c_bpp = [0; 8];
for (chunk, b_bpp) in current.chunks_exact_mut(8).zip(previous.chunks_exact(8))
{
let new_chunk = [
chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
chunk[1]
.wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
chunk[2]
.wrapping_add(filter_paeth_decode(a_bpp[2], b_bpp[2], c_bpp[2])),
chunk[3]
.wrapping_add(filter_paeth_decode(a_bpp[3], b_bpp[3], c_bpp[3])),
chunk[4]
.wrapping_add(filter_paeth_decode(a_bpp[4], b_bpp[4], c_bpp[4])),
chunk[5]
.wrapping_add(filter_paeth_decode(a_bpp[5], b_bpp[5], c_bpp[5])),
chunk[6]
.wrapping_add(filter_paeth_decode(a_bpp[6], b_bpp[6], c_bpp[6])),
chunk[7]
.wrapping_add(filter_paeth_decode(a_bpp[7], b_bpp[7], c_bpp[7])),
];
*TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
}
}
}
}
fn filter_internal(
method: FilterType,
bpp: usize,
len: usize,
previous: &[u8],
current: &[u8],
output: &mut [u8],
) -> FilterType {
use self::FilterType::*;
// This value was chosen experimentally based on what acheived the best performance. The
// Rust compiler does auto-vectorization, and 32-bytes per loop iteration seems to enable
// the fastest code when doing so.
const CHUNK_SIZE: usize = 32;
match method {
NoFilter => {
output.copy_from_slice(current);
NoFilter
}
Sub => {
let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
let mut prev_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
for ((out, cur), prev) in (&mut out_chunks).zip(&mut cur_chunks).zip(&mut prev_chunks) {
for i in 0..CHUNK_SIZE {
out[i] = cur[i].wrapping_sub(prev[i]);
}
}
for ((out, cur), &prev) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(prev_chunks.remainder())
{
*out = cur.wrapping_sub(prev);
}
output[..bpp].copy_from_slice(¤t[..bpp]);
Sub
}
Up => {
let mut out_chunks = output.chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current.chunks_exact(CHUNK_SIZE);
let mut prev_chunks = previous.chunks_exact(CHUNK_SIZE);
for ((out, cur), prev) in (&mut out_chunks).zip(&mut cur_chunks).zip(&mut prev_chunks) {
for i in 0..CHUNK_SIZE {
out[i] = cur[i].wrapping_sub(prev[i]);
}
}
for ((out, cur), &prev) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(prev_chunks.remainder())
{
*out = cur.wrapping_sub(prev);
}
Up
}
Avg => {
let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
let mut cur_minus_bpp_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
let mut prev_chunks = previous[bpp..].chunks_exact(CHUNK_SIZE);
for (((out, cur), cur_minus_bpp), prev) in (&mut out_chunks)
.zip(&mut cur_chunks)
.zip(&mut cur_minus_bpp_chunks)
.zip(&mut prev_chunks)
{
for i in 0..CHUNK_SIZE {
// Bitwise average of two integers without overflow and
// without converting to a wider bit-width. See:
// http://aggregate.org/MAGIC/#Average%20of%20Integers
// If this is unrolled by component, consider reverting to
// `((cur_minus_bpp[i] as u16 + prev[i] as u16) / 2) as u8`
out[i] = cur[i].wrapping_sub(
(cur_minus_bpp[i] & prev[i]) + ((cur_minus_bpp[i] ^ prev[i]) >> 1),
);
}
}
for (((out, cur), &cur_minus_bpp), &prev) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(cur_minus_bpp_chunks.remainder())
.zip(prev_chunks.remainder())
{
*out = cur.wrapping_sub((cur_minus_bpp & prev) + ((cur_minus_bpp ^ prev) >> 1));
}
for i in 0..bpp {
output[i] = current[i].wrapping_sub(previous[i] / 2);
}
Avg
}
Paeth => {
let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
let mut a_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
let mut b_chunks = previous[bpp..].chunks_exact(CHUNK_SIZE);
let mut c_chunks = previous[..len - bpp].chunks_exact(CHUNK_SIZE);
for ((((out, cur), a), b), c) in (&mut out_chunks)
.zip(&mut cur_chunks)
.zip(&mut a_chunks)
.zip(&mut b_chunks)
.zip(&mut c_chunks)
{
for i in 0..CHUNK_SIZE {
out[i] = cur[i].wrapping_sub(filter_paeth(a[i], b[i], c[i]));
}
}
for ((((out, cur), &a), &b), &c) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(a_chunks.remainder())
.zip(b_chunks.remainder())
.zip(c_chunks.remainder())
{
*out = cur.wrapping_sub(filter_paeth(a, b, c));
}
for i in 0..bpp {
output[i] = current[i].wrapping_sub(filter_paeth(0, previous[i], 0));
}
Paeth
}
}
}
pub(crate) fn filter(
method: FilterType,
adaptive: AdaptiveFilterType,
bpp: BytesPerPixel,
previous: &[u8],
current: &[u8],
output: &mut [u8],
) -> FilterType {
use FilterType::*;
let bpp = bpp.into_usize();
let len = current.len();
match adaptive {
AdaptiveFilterType::NonAdaptive => {
filter_internal(method, bpp, len, previous, current, output)
}
AdaptiveFilterType::Adaptive => {
let mut min_sum: u64 = u64::MAX;
let mut filter_choice = FilterType::NoFilter;
for &filter in [Sub, Up, Avg, Paeth].iter() {
filter_internal(filter, bpp, len, previous, current, output);
let sum = sum_buffer(output);
if sum <= min_sum {
min_sum = sum;
filter_choice = filter;
}
}
if filter_choice != Paeth {
filter_internal(filter_choice, bpp, len, previous, current, output);
}
filter_choice
}
}
}
// Helper function for Adaptive filter buffer summation
fn sum_buffer(buf: &[u8]) -> u64 {
const CHUNK_SIZE: usize = 32;
let mut buf_chunks = buf.chunks_exact(CHUNK_SIZE);
let mut sum = 0_u64;
for chunk in &mut buf_chunks {
// At most, `acc` can be `32 * (i8::MIN as u8) = 32 * 128 = 4096`.
let mut acc = 0;
for &b in chunk {
acc += u64::from((b as i8).unsigned_abs());
}
sum = sum.saturating_add(acc);
}
let mut acc = 0;
for &b in buf_chunks.remainder() {
acc += u64::from((b as i8).unsigned_abs());
}
sum.saturating_add(acc)
}
#[cfg(test)]
mod test {
use super::{filter, unfilter, AdaptiveFilterType, BytesPerPixel, FilterType};
use core::iter;
#[test]
fn roundtrip() {
// A multiple of 8, 6, 4, 3, 2, 1
const LEN: u8 = 240;
let previous: Vec<_> = iter::repeat(1).take(LEN.into()).collect();
let current: Vec<_> = (0..LEN).collect();
let expected = current.clone();
let adaptive = AdaptiveFilterType::NonAdaptive;
let roundtrip = |kind, bpp: BytesPerPixel| {
let mut output = vec![0; LEN.into()];
filter(kind, adaptive, bpp, &previous, ¤t, &mut output);
unfilter(kind, bpp, &previous, &mut output);
assert_eq!(
output, expected,
"Filtering {:?} with {:?} does not roundtrip",
bpp, kind
);
};
let filters = [
FilterType::NoFilter,
FilterType::Sub,
FilterType::Up,
FilterType::Avg,
FilterType::Paeth,
];
let bpps = [
BytesPerPixel::One,
BytesPerPixel::Two,
BytesPerPixel::Three,
BytesPerPixel::Four,
BytesPerPixel::Six,
BytesPerPixel::Eight,
];
for &filter in filters.iter() {
for &bpp in bpps.iter() {
roundtrip(filter, bpp);
}
}
}
#[test]
fn roundtrip_ascending_previous_line() {
// A multiple of 8, 6, 4, 3, 2, 1
const LEN: u8 = 240;
let previous: Vec<_> = (0..LEN).collect();
let current: Vec<_> = (0..LEN).collect();
let expected = current.clone();
let adaptive = AdaptiveFilterType::NonAdaptive;
let roundtrip = |kind, bpp: BytesPerPixel| {
let mut output = vec![0; LEN.into()];
filter(kind, adaptive, bpp, &previous, ¤t, &mut output);
unfilter(kind, bpp, &previous, &mut output);
assert_eq!(
output, expected,
"Filtering {:?} with {:?} does not roundtrip",
bpp, kind
);
};
let filters = [
FilterType::NoFilter,
FilterType::Sub,
FilterType::Up,
FilterType::Avg,
FilterType::Paeth,
];
let bpps = [
BytesPerPixel::One,
BytesPerPixel::Two,
BytesPerPixel::Three,
BytesPerPixel::Four,
BytesPerPixel::Six,
BytesPerPixel::Eight,
];
for &filter in filters.iter() {
for &bpp in bpps.iter() {
roundtrip(filter, bpp);
}
}
}
#[test]
// This tests that converting u8 to i8 doesn't overflow when taking the
// absolute value for adaptive filtering: -128_i8.abs() will panic in debug
// or produce garbage in release mode. The sum of 0..=255u8 should equal the
// sum of the absolute values of -128_i8..=127, or abs(-128..=0) + 1..=127.
fn sum_buffer_test() {
let sum = (0..=128).sum::<u64>() + (1..=127).sum::<u64>();
let buf: Vec<u8> = (0_u8..=255).collect();
assert_eq!(sum, crate::filter::sum_buffer(&buf));
}
}