1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
//! Streaming decompression functionality.
use super::*;
use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER};
use ::core::convert::TryInto;
use ::core::{cmp, slice};
use self::output_buffer::OutputBuffer;
pub const TINFL_LZ_DICT_SIZE: usize = 32_768;
/// A struct containing huffman code lengths and the huffman code tree used by the decompressor.
struct HuffmanTable {
/// Length of the code at each index.
pub code_size: [u8; MAX_HUFF_SYMBOLS_0],
/// Fast lookup table for shorter huffman codes.
///
/// See `HuffmanTable::fast_lookup`.
pub look_up: [i16; FAST_LOOKUP_SIZE as usize],
/// Full huffman tree.
///
/// Positive values are edge nodes/symbols, negative values are
/// parent nodes/references to other nodes.
pub tree: [i16; MAX_HUFF_TREE_SIZE],
}
impl HuffmanTable {
const fn new() -> HuffmanTable {
HuffmanTable {
code_size: [0; MAX_HUFF_SYMBOLS_0],
look_up: [0; FAST_LOOKUP_SIZE as usize],
tree: [0; MAX_HUFF_TREE_SIZE],
}
}
/// Look for a symbol in the fast lookup table.
/// The symbol is stored in the lower 9 bits, the length in the next 6.
/// If the returned value is negative, the code wasn't found in the
/// fast lookup table and the full tree has to be traversed to find the code.
#[inline]
fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 {
self.look_up[(bit_buf & BitBuffer::from(FAST_LOOKUP_SIZE - 1)) as usize]
}
/// Get the symbol and the code length from the huffman tree.
#[inline]
fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u32) -> (i32, u32) {
let mut symbol = fast_symbol;
// We step through the tree until we encounter a positive value, which indicates a
// symbol.
loop {
// symbol here indicates the position of the left (0) node, if the next bit is 1
// we add 1 to the lookup position to get the right node.
symbol = i32::from(self.tree[(!symbol + ((bit_buf >> code_len) & 1) as i32) as usize]);
code_len += 1;
if symbol >= 0 {
break;
}
}
(symbol, code_len)
}
#[inline]
/// Look up a symbol and code length from the bits in the provided bit buffer.
///
/// Returns Some(symbol, length) on success,
/// None if the length is 0.
///
/// It's possible we could avoid checking for 0 if we can guarantee a sane table.
/// TODO: Check if a smaller type for code_len helps performance.
fn lookup(&self, bit_buf: BitBuffer) -> Option<(i32, u32)> {
let symbol = self.fast_lookup(bit_buf).into();
if symbol >= 0 {
if (symbol >> 9) as u32 != 0 {
Some((symbol, (symbol >> 9) as u32))
} else {
// Zero-length code.
None
}
} else {
// We didn't get a symbol from the fast lookup table, so check the tree instead.
Some(self.tree_lookup(symbol, bit_buf, FAST_LOOKUP_BITS.into()))
}
}
}
/// The number of huffman tables used.
const MAX_HUFF_TABLES: usize = 3;
/// The length of the first (literal/length) huffman table.
const MAX_HUFF_SYMBOLS_0: usize = 288;
/// The length of the second (distance) huffman table.
const MAX_HUFF_SYMBOLS_1: usize = 32;
/// The length of the last (huffman code length) huffman table.
const _MAX_HUFF_SYMBOLS_2: usize = 19;
/// The maximum length of a code that can be looked up in the fast lookup table.
const FAST_LOOKUP_BITS: u8 = 10;
/// The size of the fast lookup table.
const FAST_LOOKUP_SIZE: u32 = 1 << FAST_LOOKUP_BITS;
const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2;
const LITLEN_TABLE: usize = 0;
const DIST_TABLE: usize = 1;
const HUFFLEN_TABLE: usize = 2;
/// Flags to [`decompress()`] to control how inflation works.
///
/// These define bits for a bitmask argument.
pub mod inflate_flags {
/// Should we try to parse a zlib header?
///
/// If unset, the function will expect an RFC1951 deflate stream. If set, it will expect a
/// RFC1950 zlib wrapper around the deflate stream.
pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1;
/// There will be more input that hasn't been given to the decompressor yet.
///
/// This is useful when you want to decompress what you have so far,
/// even if you know there is probably more input that hasn't gotten here yet (_e.g._, over a
/// network connection). When [`decompress()`][super::decompress] reaches the end of the input
/// without finding the end of the compressed stream, it will return
/// [`TINFLStatus::NeedsMoreInput`][super::TINFLStatus::NeedsMoreInput] if this is set,
/// indicating that you should get more data before calling again. If not set, it will return
/// [`TINFLStatus::FailedCannotMakeProgress`][super::TINFLStatus::FailedCannotMakeProgress]
/// suggesting the stream is corrupt, since you claimed it was all there.
pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2;
/// The output buffer should not wrap around.
pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4;
/// Calculate the adler32 checksum of the output data even if we're not inflating a zlib stream.
///
/// If [`TINFL_FLAG_IGNORE_ADLER32`] is specified, it will override this.
///
/// NOTE: Enabling/disabling this between calls to decompress will result in an incorrect
/// checksum.
pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8;
/// Ignore adler32 checksum even if we are inflating a zlib stream.
///
/// Overrides [`TINFL_FLAG_COMPUTE_ADLER32`] if both are enabled.
///
/// NOTE: This flag does not exist in miniz as it does not support this and is a
/// custom addition for miniz_oxide.
///
/// NOTE: Should not be changed from enabled to disabled after decompression has started,
/// this will result in checksum failure (outside the unlikely event where the checksum happens
/// to match anyway).
pub const TINFL_FLAG_IGNORE_ADLER32: u32 = 64;
}
use self::inflate_flags::*;
const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4];
#[cfg(target_pointer_width = "64")]
type BitBuffer = u64;
#[cfg(not(target_pointer_width = "64"))]
type BitBuffer = u32;
/// Main decompression struct.
///
pub struct DecompressorOxide {
/// Current state of the decompressor.
state: core::State,
/// Number of bits in the bit buffer.
num_bits: u32,
/// Zlib CMF
z_header0: u32,
/// Zlib FLG
z_header1: u32,
/// Adler32 checksum from the zlib header.
z_adler32: u32,
/// 1 if the current block is the last block, 0 otherwise.
finish: u32,
/// The type of the current block.
block_type: u32,
/// 1 if the adler32 value should be checked.
check_adler32: u32,
/// Last match distance.
dist: u32,
/// Variable used for match length, symbols, and a number of other things.
counter: u32,
/// Number of extra bits for the last length or distance code.
num_extra: u32,
/// Number of entries in each huffman table.
table_sizes: [u32; MAX_HUFF_TABLES],
/// Buffer of input data.
bit_buf: BitBuffer,
/// Huffman tables.
tables: [HuffmanTable; MAX_HUFF_TABLES],
/// Raw block header.
raw_header: [u8; 4],
/// Huffman length codes.
len_codes: [u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137],
}
impl DecompressorOxide {
/// Create a new tinfl_decompressor with all fields set to 0.
pub fn new() -> DecompressorOxide {
DecompressorOxide::default()
}
/// Set the current state to `Start`.
#[inline]
pub fn init(&mut self) {
// The rest of the data is reset or overwritten when used.
self.state = core::State::Start;
}
/// Returns the adler32 checksum of the currently decompressed data.
/// Note: Will return Some(1) if decompressing zlib but ignoring adler32.
#[inline]
pub fn adler32(&self) -> Option<u32> {
if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 {
Some(self.check_adler32)
} else {
None
}
}
/// Returns the adler32 that was read from the zlib header if it exists.
#[inline]
pub fn adler32_header(&self) -> Option<u32> {
if self.state != State::Start && self.state != State::BadZlibHeader && self.z_header0 != 0 {
Some(self.z_adler32)
} else {
None
}
}
}
impl Default for DecompressorOxide {
/// Create a new tinfl_decompressor with all fields set to 0.
#[inline(always)]
fn default() -> Self {
DecompressorOxide {
state: core::State::Start,
num_bits: 0,
z_header0: 0,
z_header1: 0,
z_adler32: 0,
finish: 0,
block_type: 0,
check_adler32: 0,
dist: 0,
counter: 0,
num_extra: 0,
table_sizes: [0; MAX_HUFF_TABLES],
bit_buf: 0,
// TODO:(oyvindln) Check that copies here are optimized out in release mode.
tables: [
HuffmanTable::new(),
HuffmanTable::new(),
HuffmanTable::new(),
],
raw_header: [0; 4],
len_codes: [0; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137],
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[non_exhaustive]
enum State {
Start = 0,
ReadZlibCmf,
ReadZlibFlg,
ReadBlockHeader,
BlockTypeNoCompression,
RawHeader,
RawMemcpy1,
RawMemcpy2,
ReadTableSizes,
ReadHufflenTableCodeSize,
ReadLitlenDistTablesCodeSize,
ReadExtraBitsCodeSize,
DecodeLitlen,
WriteSymbol,
ReadExtraBitsLitlen,
DecodeDistance,
ReadExtraBitsDistance,
RawReadFirstByte,
RawStoreFirstByte,
WriteLenBytesToEnd,
BlockDone,
HuffDecodeOuterLoop1,
HuffDecodeOuterLoop2,
ReadAdler32,
DoneForever,
// Failure states.
BlockTypeUnexpected,
BadCodeSizeSum,
BadDistOrLiteralTableLength,
BadTotalSymbols,
BadZlibHeader,
DistanceOutOfBounds,
BadRawLength,
BadCodeSizeDistPrevLookup,
InvalidLitlen,
InvalidDist,
InvalidCodeLen,
}
impl State {
fn is_failure(self) -> bool {
match self {
BlockTypeUnexpected => true,
BadCodeSizeSum => true,
BadDistOrLiteralTableLength => true,
BadTotalSymbols => true,
BadZlibHeader => true,
DistanceOutOfBounds => true,
BadRawLength => true,
BadCodeSizeDistPrevLookup => true,
InvalidLitlen => true,
InvalidDist => true,
_ => false,
}
}
#[inline]
fn begin(&mut self, new_state: State) {
*self = new_state;
}
}
use self::State::*;
// Not sure why miniz uses 32-bit values for these, maybe alignment/cache again?
// # Optimization
// We add a extra value at the end and make the tables 32 elements long
// so we can use a mask to avoid bounds checks.
// The invalid values are set to something high enough to avoid underflowing
// the match length.
/// Base length for each length code.
///
/// The base is used together with the value of the extra bits to decode the actual
/// length/distance values in a match.
#[rustfmt::skip]
const LENGTH_BASE: [u16; 32] = [
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512
];
/// Number of extra bits for each length code.
#[rustfmt::skip]
const LENGTH_EXTRA: [u8; 32] = [
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0
];
/// Base length for each distance code.
#[rustfmt::skip]
const DIST_BASE: [u16; 32] = [
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33,
49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537,
2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577, 32_768, 32_768
];
/// Number of extra bits for each distance code.
#[rustfmt::skip]
const DIST_EXTRA: [u8; 32] = [
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13
];
/// The mask used when indexing the base/extra arrays.
const BASE_EXTRA_MASK: usize = 32 - 1;
/// Sets the value of all the elements of the slice to `val`.
#[inline]
fn memset<T: Copy>(slice: &mut [T], val: T) {
for x in slice {
*x = val
}
}
/// Read an le u16 value from the slice iterator.
///
/// # Panics
/// Panics if there are less than two bytes left.
#[inline]
fn read_u16_le(iter: &mut slice::Iter<u8>) -> u16 {
let ret = {
let two_bytes = iter.as_ref()[..2].try_into().unwrap();
u16::from_le_bytes(two_bytes)
};
iter.nth(1);
ret
}
/// Read an le u32 value from the slice iterator.
///
/// # Panics
/// Panics if there are less than four bytes left.
#[inline(always)]
#[cfg(target_pointer_width = "64")]
fn read_u32_le(iter: &mut slice::Iter<u8>) -> u32 {
let ret = {
let four_bytes: [u8; 4] = iter.as_ref()[..4].try_into().unwrap();
u32::from_le_bytes(four_bytes)
};
iter.nth(3);
ret
}
/// Ensure that there is data in the bit buffer.
///
/// On 64-bit platform, we use a 64-bit value so this will
/// result in there being at least 32 bits in the bit buffer.
/// This function assumes that there is at least 4 bytes left in the input buffer.
#[inline(always)]
#[cfg(target_pointer_width = "64")]
fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) {
// Read four bytes into the buffer at once.
if l.num_bits < 30 {
l.bit_buf |= BitBuffer::from(read_u32_le(in_iter)) << l.num_bits;
l.num_bits += 32;
}
}
/// Same as previous, but for non-64-bit platforms.
/// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer.
#[inline(always)]
#[cfg(not(target_pointer_width = "64"))]
fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>) {
// If the buffer is 32-bit wide, read 2 bytes instead.
if l.num_bits < 15 {
l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits;
l.num_bits += 16;
}
}
/// Check that the zlib header is correct and that there is enough space in the buffer
/// for the window size specified in the header.
///
/// See https://tools.ietf.org/html/rfc1950
#[inline]
fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action {
let mut failed =
// cmf + flg should be divisible by 31.
(((cmf * 256) + flg) % 31 != 0) ||
// If this flag is set, a dictionary was used for this zlib compressed data.
// This is currently not supported by miniz or miniz-oxide
((flg & 0b0010_0000) != 0) ||
// Compression method. Only 8(DEFLATE) is defined by the standard.
((cmf & 15) != 8);
let window_size = 1 << ((cmf >> 4) + 8);
if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 {
// Bail if the buffer is wrapping and the window size is larger than the buffer.
failed |= (mask + 1) < window_size;
}
// Zlib doesn't allow window sizes above 32 * 1024.
failed |= window_size > 32_768;
if failed {
Action::Jump(BadZlibHeader)
} else {
Action::Jump(ReadBlockHeader)
}
}
enum Action {
None,
Jump(State),
End(TINFLStatus),
}
/// Try to decode the next huffman code, and puts it in the counter field of the decompressor
/// if successful.
///
/// # Returns
/// The specified action returned from `f` on success,
/// `Action::End` if there are not enough data left to decode a symbol.
fn decode_huffman_code<F>(
r: &mut DecompressorOxide,
l: &mut LocalVars,
table: usize,
flags: u32,
in_iter: &mut slice::Iter<u8>,
f: F,
) -> Action
where
F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action,
{
// As the huffman codes can be up to 15 bits long we need at least 15 bits
// ready in the bit buffer to start decoding the next huffman code.
if l.num_bits < 15 {
// First, make sure there is enough data in the bit buffer to decode a huffman code.
if in_iter.len() < 2 {
// If there is less than 2 bytes left in the input buffer, we try to look up
// the huffman code with what's available, and return if that doesn't succeed.
// Original explanation in miniz:
// /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes
// * remaining in the input buffer falls below 2. */
// /* It reads just enough bytes from the input stream that are needed to decode
// * the next Huffman code (and absolutely no more). It works by trying to fully
// * decode a */
// /* Huffman code by using whatever bits are currently present in the bit buffer.
// * If this fails, it reads another byte, and tries again until it succeeds or
// * until the */
// /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */
loop {
let mut temp = i32::from(r.tables[table].fast_lookup(l.bit_buf));
if temp >= 0 {
let code_len = (temp >> 9) as u32;
if (code_len != 0) && (l.num_bits >= code_len) {
break;
}
} else if l.num_bits > FAST_LOOKUP_BITS.into() {
let mut code_len = u32::from(FAST_LOOKUP_BITS);
loop {
temp = i32::from(
r.tables[table].tree
[(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize],
);
code_len += 1;
if temp >= 0 || l.num_bits < code_len + 1 {
break;
}
}
if temp >= 0 {
break;
}
}
// TODO: miniz jumps straight to here after getting here again after failing to read
// a byte.
// Doing that lets miniz avoid re-doing the lookup that that was done in the
// previous call.
let mut byte = 0;
if let a @ Action::End(_) = read_byte(in_iter, flags, |b| {
byte = b;
Action::None
}) {
return a;
};
// Do this outside closure for now to avoid borrowing r.
l.bit_buf |= BitBuffer::from(byte) << l.num_bits;
l.num_bits += 8;
if l.num_bits >= 15 {
break;
}
}
} else {
// There is enough data in the input buffer, so read the next two bytes
// and add them to the bit buffer.
// Unwrapping here is fine since we just checked that there are at least two
// bytes left.
l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits;
l.num_bits += 16;
}
}
// We now have at least 15 bits in the input buffer.
let mut symbol = i32::from(r.tables[table].fast_lookup(l.bit_buf));
let code_len;
// If the symbol was found in the fast lookup table.
if symbol >= 0 {
// Get the length value from the top bits.
// As we shift down the sign bit, converting to an unsigned value
// shouldn't overflow.
code_len = (symbol >> 9) as u32;
// Mask out the length value.
symbol &= 511;
} else {
let res = r.tables[table].tree_lookup(symbol, l.bit_buf, u32::from(FAST_LOOKUP_BITS));
symbol = res.0;
code_len = res.1 as u32;
};
if code_len == 0 {
return Action::Jump(InvalidCodeLen);
}
l.bit_buf >>= code_len as u32;
l.num_bits -= code_len;
f(r, l, symbol)
}
/// Try to read one byte from `in_iter` and call `f` with the read byte as an argument,
/// returning the result.
/// If reading fails, `Action::End is returned`
#[inline]
fn read_byte<F>(in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action
where
F: FnOnce(u8) -> Action,
{
match in_iter.next() {
None => end_of_input(flags),
Some(&byte) => f(byte),
}
}
// TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always))
/// Try to read `amount` number of bits from `in_iter` and call the function `f` with the bits as an
/// an argument after reading, returning the result of that function, or `Action::End` if there are
/// not enough bytes left.
#[inline]
#[allow(clippy::while_immutable_condition)]
fn read_bits<F>(
l: &mut LocalVars,
amount: u32,
in_iter: &mut slice::Iter<u8>,
flags: u32,
f: F,
) -> Action
where
F: FnOnce(&mut LocalVars, BitBuffer) -> Action,
{
// Clippy gives a false positive warning here due to the closure.
// Read enough bytes from the input iterator to cover the number of bits we want.
while l.num_bits < amount {
match read_byte(in_iter, flags, |byte| {
l.bit_buf |= BitBuffer::from(byte) << l.num_bits;
l.num_bits += 8;
Action::None
}) {
Action::None => (),
// If there are not enough bytes in the input iterator, return and signal that we need
// more.
action => return action,
}
}
let bits = l.bit_buf & ((1 << amount) - 1);
l.bit_buf >>= amount;
l.num_bits -= amount;
f(l, bits)
}
#[inline]
fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut slice::Iter<u8>, flags: u32, f: F) -> Action
where
F: FnOnce(&mut LocalVars) -> Action,
{
let num_bits = l.num_bits & 7;
read_bits(l, num_bits, in_iter, flags, |l, _| f(l))
}
#[inline]
fn end_of_input(flags: u32) -> Action {
Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 {
TINFLStatus::NeedsMoreInput
} else {
TINFLStatus::FailedCannotMakeProgress
})
}
#[inline]
fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 {
let res = cmp::min(l.num_bits >> 3, max);
l.num_bits -= res << 3;
res
}
fn start_static_table(r: &mut DecompressorOxide) {
r.table_sizes[LITLEN_TABLE] = 288;
r.table_sizes[DIST_TABLE] = 32;
memset(&mut r.tables[LITLEN_TABLE].code_size[0..144], 8);
memset(&mut r.tables[LITLEN_TABLE].code_size[144..256], 9);
memset(&mut r.tables[LITLEN_TABLE].code_size[256..280], 7);
memset(&mut r.tables[LITLEN_TABLE].code_size[280..288], 8);
memset(&mut r.tables[DIST_TABLE].code_size[0..32], 5);
}
static REVERSED_BITS_LOOKUP: [u32; 1024] = {
let mut table = [0; 1024];
let mut i = 0;
while i < 1024 {
table[i] = (i as u32).reverse_bits();
i += 1;
}
table
};
fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Action {
loop {
let table = &mut r.tables[r.block_type as usize];
let table_size = r.table_sizes[r.block_type as usize] as usize;
let mut total_symbols = [0u32; 16];
let mut next_code = [0u32; 17];
memset(&mut table.look_up[..], 0);
memset(&mut table.tree[..], 0);
for &code_size in &table.code_size[..table_size] {
total_symbols[code_size as usize] += 1;
}
let mut used_symbols = 0;
let mut total = 0;
for i in 1..16 {
used_symbols += total_symbols[i];
total += total_symbols[i];
total <<= 1;
next_code[i + 1] = total;
}
if total != 65_536 && used_symbols > 1 {
return Action::Jump(BadTotalSymbols);
}
let mut tree_next = -1;
for symbol_index in 0..table_size {
let mut rev_code = 0;
let code_size = table.code_size[symbol_index];
if code_size == 0 {
continue;
}
let mut cur_code = next_code[code_size as usize];
next_code[code_size as usize] += 1;
let n = cur_code & (u32::MAX >> (32 - code_size));
let mut rev_code = if n < 1024 {
REVERSED_BITS_LOOKUP[n as usize] >> (32 - code_size)
} else {
for _ in 0..code_size {
rev_code = (rev_code << 1) | (cur_code & 1);
cur_code >>= 1;
}
rev_code
};
if code_size <= FAST_LOOKUP_BITS {
let k = (i16::from(code_size) << 9) | symbol_index as i16;
while rev_code < FAST_LOOKUP_SIZE {
table.look_up[rev_code as usize] = k;
rev_code += 1 << code_size;
}
continue;
}
let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize];
if tree_cur == 0 {
table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next as i16;
tree_cur = tree_next;
tree_next -= 2;
}
rev_code >>= FAST_LOOKUP_BITS - 1;
for _ in FAST_LOOKUP_BITS + 1..code_size {
rev_code >>= 1;
tree_cur -= (rev_code & 1) as i16;
if table.tree[(-tree_cur - 1) as usize] == 0 {
table.tree[(-tree_cur - 1) as usize] = tree_next as i16;
tree_cur = tree_next;
tree_next -= 2;
} else {
tree_cur = table.tree[(-tree_cur - 1) as usize];
}
}
rev_code >>= 1;
tree_cur -= (rev_code & 1) as i16;
table.tree[(-tree_cur - 1) as usize] = symbol_index as i16;
}
if r.block_type == 2 {
l.counter = 0;
return Action::Jump(ReadLitlenDistTablesCodeSize);
}
if r.block_type == 0 {
break;
}
r.block_type -= 1;
}
l.counter = 0;
Action::Jump(DecodeLitlen)
}
// A helper macro for generating the state machine.
//
// As Rust doesn't have fallthrough on matches, we have to return to the match statement
// and jump for each state change. (Which would ideally be optimized away, but often isn't.)
macro_rules! generate_state {
($state: ident, $state_machine: tt, $f: expr) => {
loop {
match $f {
Action::None => continue,
Action::Jump(new_state) => {
$state = new_state;
continue $state_machine;
},
Action::End(result) => break $state_machine result,
}
}
};
}
#[derive(Copy, Clone)]
struct LocalVars {
pub bit_buf: BitBuffer,
pub num_bits: u32,
pub dist: u32,
pub counter: u32,
pub num_extra: u32,
}
#[inline]
fn transfer(
out_slice: &mut [u8],
mut source_pos: usize,
mut out_pos: usize,
match_len: usize,
out_buf_size_mask: usize,
) {
// special case that comes up surprisingly often. in the case that `source_pos`
// is 1 less than `out_pos`, we can say that the entire range will be the same
// value and optimize this to be a simple `memset`
let source_diff = if source_pos > out_pos {
source_pos - out_pos
} else {
out_pos - source_pos
};
if out_buf_size_mask == usize::MAX && source_diff == 1 && out_pos > source_pos {
let init = out_slice[out_pos - 1];
let end = (match_len >> 2) * 4 + out_pos;
out_slice[out_pos..end].fill(init);
out_pos = end;
source_pos = end - 1;
// if the difference between `source_pos` and `out_pos` is greater than 3, we
// can do slightly better than the naive case by copying everything at once
} else if out_buf_size_mask == usize::MAX && source_diff >= 4 && out_pos > source_pos {
for _ in 0..match_len >> 2 {
out_slice.copy_within(source_pos..=source_pos + 3, out_pos);
source_pos += 4;
out_pos += 4;
}
} else {
for _ in 0..match_len >> 2 {
out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask];
source_pos += 4;
out_pos += 4;
}
}
match match_len & 3 {
0 => (),
1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask],
2 => {
out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
}
3 => {
out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask];
out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
}
_ => unreachable!(),
}
}
/// Presumes that there is at least match_len bytes in output left.
#[inline]
fn apply_match(
out_slice: &mut [u8],
out_pos: usize,
dist: usize,
match_len: usize,
out_buf_size_mask: usize,
) {
debug_assert!(out_pos + match_len <= out_slice.len());
let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask;
if match_len == 3 {
// Fast path for match len 3.
out_slice[out_pos] = out_slice[source_pos];
out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask];
out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask];
return;
}
if cfg!(not(any(target_arch = "x86", target_arch = "x86_64"))) {
// We are not on x86 so copy manually.
transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
return;
}
if source_pos >= out_pos && (source_pos - out_pos) < match_len {
transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
} else if match_len <= dist && source_pos + match_len < out_slice.len() {
// Destination and source segments does not intersect and source does not wrap.
if source_pos < out_pos {
let (from_slice, to_slice) = out_slice.split_at_mut(out_pos);
to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]);
} else {
let (to_slice, from_slice) = out_slice.split_at_mut(source_pos);
to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]);
}
} else {
transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask);
}
}
/// Fast inner decompression loop which is run while there is at least
/// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer
/// (The maximum one match would need + 1).
///
/// This was inspired by a similar optimization in zlib, which uses this info to do
/// faster unchecked copies of multiple bytes at a time.
/// Currently we don't do this here, but this function does avoid having to jump through the
/// big match loop on each state change(as rust does not have fallthrough or gotos at the moment),
/// and already improves decompression speed a fair bit.
fn decompress_fast(
r: &mut DecompressorOxide,
in_iter: &mut slice::Iter<u8>,
out_buf: &mut OutputBuffer,
flags: u32,
local_vars: &mut LocalVars,
out_buf_size_mask: usize,
) -> (TINFLStatus, State) {
// Make a local copy of the most used variables, to avoid having to update and read from values
// in a random memory location and to encourage more register use.
let mut l = *local_vars;
let mut state;
let status: TINFLStatus = 'o: loop {
state = State::DecodeLitlen;
loop {
// This function assumes that there is at least 259 bytes left in the output buffer,
// and that there is at least 14 bytes left in the input buffer. 14 input bytes:
// 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist)
// + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes
// We need the one extra byte as we may write one length and one full match
// before checking again.
if out_buf.bytes_left() < 259 || in_iter.len() < 14 {
state = State::DecodeLitlen;
break 'o TINFLStatus::Done;
}
fill_bit_buffer(&mut l, in_iter);
if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
l.counter = symbol as u32;
l.bit_buf >>= code_len;
l.num_bits -= code_len;
if (l.counter & 256) != 0 {
// The symbol is not a literal.
break;
} else {
// If we have a 32-bit buffer we need to read another two bytes now
// to have enough bits to keep going.
if cfg!(not(target_pointer_width = "64")) {
fill_bit_buffer(&mut l, in_iter);
}
if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
l.bit_buf >>= code_len;
l.num_bits -= code_len;
// The previous symbol was a literal, so write it directly and check
// the next one.
out_buf.write_byte(l.counter as u8);
if (symbol & 256) != 0 {
l.counter = symbol as u32;
// The symbol is a length value.
break;
} else {
// The symbol is a literal, so write it directly and continue.
out_buf.write_byte(symbol as u8);
}
} else {
state.begin(InvalidCodeLen);
break 'o TINFLStatus::Failed;
}
}
} else {
state.begin(InvalidCodeLen);
break 'o TINFLStatus::Failed;
}
}
// Mask the top bits since they may contain length info.
l.counter &= 511;
if l.counter == 256 {
// We hit the end of block symbol.
state.begin(BlockDone);
break 'o TINFLStatus::Done;
} else if l.counter > 285 {
// Invalid code.
// We already verified earlier that the code is > 256.
state.begin(InvalidLitlen);
break 'o TINFLStatus::Failed;
} else {
// The symbol was a length code.
// # Optimization
// Mask the value to avoid bounds checks
// We could use get_unchecked later if can statically verify that
// this will never go out of bounds.
l.num_extra = u32::from(LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
// Length and distance codes have a number of extra bits depending on
// the base, which together with the base gives us the exact value.
fill_bit_buffer(&mut l, in_iter);
if l.num_extra != 0 {
let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1);
l.bit_buf >>= l.num_extra;
l.num_bits -= l.num_extra;
l.counter += extra_bits as u32;
}
// We found a length code, so a distance code should follow.
if cfg!(not(target_pointer_width = "64")) {
fill_bit_buffer(&mut l, in_iter);
}
if let Some((mut symbol, code_len)) = r.tables[DIST_TABLE].lookup(l.bit_buf) {
symbol &= 511;
l.bit_buf >>= code_len;
l.num_bits -= code_len;
if symbol > 29 {
state.begin(InvalidDist);
break 'o TINFLStatus::Failed;
}
l.num_extra = u32::from(DIST_EXTRA[symbol as usize]);
l.dist = u32::from(DIST_BASE[symbol as usize]);
} else {
state.begin(InvalidCodeLen);
break 'o TINFLStatus::Failed;
}
if l.num_extra != 0 {
fill_bit_buffer(&mut l, in_iter);
let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1);
l.bit_buf >>= l.num_extra;
l.num_bits -= l.num_extra;
l.dist += extra_bits as u32;
}
let position = out_buf.position();
if l.dist as usize > out_buf.position()
&& (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)
{
// We encountered a distance that refers a position before
// the start of the decoded data, so we can't continue.
state.begin(DistanceOutOfBounds);
break TINFLStatus::Failed;
}
apply_match(
out_buf.get_mut(),
position,
l.dist as usize,
l.counter as usize,
out_buf_size_mask,
);
out_buf.set_position(position + l.counter as usize);
}
};
*local_vars = l;
(status, state)
}
/// Main decompression function. Keeps decompressing data from `in_buf` until the `in_buf` is
/// empty, `out` is full, the end of the deflate stream is hit, or there is an error in the
/// deflate stream.
///
/// # Arguments
///
/// `r` is a [`DecompressorOxide`] struct with the state of this stream.
///
/// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will
/// start at the first byte of this buffer.
///
/// `out` is a reference to the buffer that will store the decompressed data, and that
/// stores previously decompressed data if any.
///
/// * The offset given by `out_pos` indicates where in the output buffer slice writing should start.
/// * If [`TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF`] is not set, the output buffer is used in a
/// wrapping manner, and it's size is required to be a power of 2.
/// * The decompression function normally needs access to 32KiB of the previously decompressed data
///(or to the beginning of the decompressed data if less than 32KiB has been decompressed.)
/// - If this data is not available, decompression may fail.
/// - Some deflate compressors allow specifying a window size which limits match distances to
/// less than this, or alternatively an RLE mode where matches will only refer to the previous byte
/// and thus allows a smaller output buffer. The window size can be specified in the zlib
/// header structure, however, the header data should not be relied on to be correct.
///
/// `flags` indicates settings and status to the decompression function.
/// * The [`TINFL_FLAG_HAS_MORE_INPUT`] has to be specified if more compressed data is to be provided
/// in a subsequent call to this function.
/// * See the the [`inflate_flags`] module for details on other flags.
///
/// # Returns
///
/// Returns a tuple containing the status of the compressor, the number of input bytes read, and the
/// number of bytes output to `out`.
///
/// This function shouldn't panic pending any bugs.
pub fn decompress(
r: &mut DecompressorOxide,
in_buf: &[u8],
out: &mut [u8],
out_pos: usize,
flags: u32,
) -> (TINFLStatus, usize, usize) {
let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 {
usize::max_value()
} else {
// In the case of zero len, any attempt to write would produce HasMoreOutput,
// so to gracefully process the case of there really being no output,
// set the mask to all zeros.
out.len().saturating_sub(1)
};
// Ensure the output buffer's size is a power of 2, unless the output buffer
// is large enough to hold the entire output file (in which case it doesn't
// matter).
// Also make sure that the output buffer position is not past the end of the output buffer.
if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || out_pos > out.len() {
return (TINFLStatus::BadParam, 0, 0);
}
let mut in_iter = in_buf.iter();
let mut state = r.state;
let mut out_buf = OutputBuffer::from_slice_and_pos(out, out_pos);
// Make a local copy of the important variables here so we can work with them on the stack.
let mut l = LocalVars {
bit_buf: r.bit_buf,
num_bits: r.num_bits,
dist: r.dist,
counter: r.counter,
num_extra: r.num_extra,
};
let mut status = 'state_machine: loop {
match state {
Start => generate_state!(state, 'state_machine, {
l.bit_buf = 0;
l.num_bits = 0;
l.dist = 0;
l.counter = 0;
l.num_extra = 0;
r.z_header0 = 0;
r.z_header1 = 0;
r.z_adler32 = 1;
r.check_adler32 = 1;
if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 {
Action::Jump(State::ReadZlibCmf)
} else {
Action::Jump(State::ReadBlockHeader)
}
}),
ReadZlibCmf => generate_state!(state, 'state_machine, {
read_byte(&mut in_iter, flags, |cmf| {
r.z_header0 = u32::from(cmf);
Action::Jump(State::ReadZlibFlg)
})
}),
ReadZlibFlg => generate_state!(state, 'state_machine, {
read_byte(&mut in_iter, flags, |flg| {
r.z_header1 = u32::from(flg);
validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask)
})
}),
// Read the block header and jump to the relevant section depending on the block type.
ReadBlockHeader => generate_state!(state, 'state_machine, {
read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| {
r.finish = (bits & 1) as u32;
r.block_type = (bits >> 1) as u32 & 3;
match r.block_type {
0 => Action::Jump(BlockTypeNoCompression),
1 => {
start_static_table(r);
init_tree(r, l)
},
2 => {
l.counter = 0;
Action::Jump(ReadTableSizes)
},
3 => Action::Jump(BlockTypeUnexpected),
_ => unreachable!()
}
})
}),
// Raw/Stored/uncompressed block.
BlockTypeNoCompression => generate_state!(state, 'state_machine, {
pad_to_bytes(&mut l, &mut in_iter, flags, |l| {
l.counter = 0;
Action::Jump(RawHeader)
})
}),
// Check that the raw block header is correct.
RawHeader => generate_state!(state, 'state_machine, {
if l.counter < 4 {
// Read block length and block length check.
if l.num_bits != 0 {
read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
r.raw_header[l.counter as usize] = bits as u8;
l.counter += 1;
Action::None
})
} else {
read_byte(&mut in_iter, flags, |byte| {
r.raw_header[l.counter as usize] = byte;
l.counter += 1;
Action::None
})
}
} else {
// Check if the length value of a raw block is correct.
// The 2 first (2-byte) words in a raw header are the length and the
// ones complement of the length.
let length = u16::from(r.raw_header[0]) | (u16::from(r.raw_header[1]) << 8);
let check = u16::from(r.raw_header[2]) | (u16::from(r.raw_header[3]) << 8);
let valid = length == !check;
l.counter = length.into();
if !valid {
Action::Jump(BadRawLength)
} else if l.counter == 0 {
// Empty raw block. Sometimes used for synchronization.
Action::Jump(BlockDone)
} else if l.num_bits != 0 {
// There is some data in the bit buffer, so we need to write that first.
Action::Jump(RawReadFirstByte)
} else {
// The bit buffer is empty, so memcpy the rest of the uncompressed data from
// the block.
Action::Jump(RawMemcpy1)
}
}
}),
// Read the byte from the bit buffer.
RawReadFirstByte => generate_state!(state, 'state_machine, {
read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
l.dist = bits as u32;
Action::Jump(RawStoreFirstByte)
})
}),
// Write the byte we just read to the output buffer.
RawStoreFirstByte => generate_state!(state, 'state_machine, {
if out_buf.bytes_left() == 0 {
Action::End(TINFLStatus::HasMoreOutput)
} else {
out_buf.write_byte(l.dist as u8);
l.counter -= 1;
if l.counter == 0 || l.num_bits == 0 {
Action::Jump(RawMemcpy1)
} else {
// There is still some data left in the bit buffer that needs to be output.
// TODO: Changed this to jump to `RawReadfirstbyte` rather than
// `RawStoreFirstByte` as that seemed to be the correct path, but this
// needs testing.
Action::Jump(RawReadFirstByte)
}
}
}),
RawMemcpy1 => generate_state!(state, 'state_machine, {
if l.counter == 0 {
Action::Jump(BlockDone)
} else if out_buf.bytes_left() == 0 {
Action::End(TINFLStatus::HasMoreOutput)
} else {
Action::Jump(RawMemcpy2)
}
}),
RawMemcpy2 => generate_state!(state, 'state_machine, {
if in_iter.len() > 0 {
// Copy as many raw bytes as possible from the input to the output using memcpy.
// Raw block lengths are limited to 64 * 1024, so casting through usize and u32
// is not an issue.
let space_left = out_buf.bytes_left();
let bytes_to_copy = cmp::min(cmp::min(
space_left,
in_iter.len()),
l.counter as usize
);
out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]);
(&mut in_iter).nth(bytes_to_copy - 1);
l.counter -= bytes_to_copy as u32;
Action::Jump(RawMemcpy1)
} else {
end_of_input(flags)
}
}),
// Read how many huffman codes/symbols are used for each table.
ReadTableSizes => generate_state!(state, 'state_machine, {
if l.counter < 3 {
let num_bits = [5, 5, 4][l.counter as usize];
read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| {
r.table_sizes[l.counter as usize] =
bits as u32 + u32::from(MIN_TABLE_SIZES[l.counter as usize]);
l.counter += 1;
Action::None
})
} else {
memset(&mut r.tables[HUFFLEN_TABLE].code_size[..], 0);
l.counter = 0;
// Check that the litlen and distance are within spec.
// litlen table should be <=286 acc to the RFC and
// additionally zlib rejects dist table sizes larger than 30.
// NOTE this the final sizes after adding back predefined values, not
// raw value in the data.
// See miniz_oxide issue #130 and https://github.com/madler/zlib/issues/82.
if r.table_sizes[LITLEN_TABLE] <= 286 && r.table_sizes[DIST_TABLE] <= 30 {
Action::Jump(ReadHufflenTableCodeSize)
}
else {
Action::Jump(BadDistOrLiteralTableLength)
}
}
}),
// Read the 3-bit lengths of the huffman codes describing the huffman code lengths used
// to decode the lengths of the main tables.
ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, {
if l.counter < r.table_sizes[HUFFLEN_TABLE] {
read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| {
// These lengths are not stored in a normal ascending order, but rather one
// specified by the deflate specification intended to put the most used
// values at the front as trailing zero lengths do not have to be stored.
r.tables[HUFFLEN_TABLE]
.code_size[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] =
bits as u8;
l.counter += 1;
Action::None
})
} else {
r.table_sizes[HUFFLEN_TABLE] = 19;
init_tree(r, &mut l)
}
}),
ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, {
if l.counter < r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] {
decode_huffman_code(
r, &mut l, HUFFLEN_TABLE,
flags, &mut in_iter, |r, l, symbol| {
l.dist = symbol as u32;
if l.dist < 16 {
r.len_codes[l.counter as usize] = l.dist as u8;
l.counter += 1;
Action::None
} else if l.dist == 16 && l.counter == 0 {
Action::Jump(BadCodeSizeDistPrevLookup)
} else {
l.num_extra = [2, 3, 7][l.dist as usize - 16];
Action::Jump(ReadExtraBitsCodeSize)
}
}
)
} else if l.counter != r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] {
Action::Jump(BadCodeSizeSum)
} else {
r.tables[LITLEN_TABLE].code_size[..r.table_sizes[LITLEN_TABLE] as usize]
.copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize]);
let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize;
let dist_table_end = (r.table_sizes[LITLEN_TABLE] +
r.table_sizes[DIST_TABLE]) as usize;
r.tables[DIST_TABLE].code_size[..r.table_sizes[DIST_TABLE] as usize]
.copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]);
r.block_type -= 1;
init_tree(r, &mut l)
}
}),
ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, {
let num_extra = l.num_extra;
read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| {
// Mask to avoid a bounds check.
extra_bits += [3, 3, 11][(l.dist as usize - 16) & 3];
let val = if l.dist == 16 {
r.len_codes[l.counter as usize - 1]
} else {
0
};
memset(
&mut r.len_codes[
l.counter as usize..l.counter as usize + extra_bits as usize
],
val,
);
l.counter += extra_bits as u32;
Action::Jump(ReadLitlenDistTablesCodeSize)
})
}),
DecodeLitlen => generate_state!(state, 'state_machine, {
if in_iter.len() < 4 || out_buf.bytes_left() < 2 {
// See if we can decode a literal with the data we have left.
// Jumps to next state (WriteSymbol) if successful.
decode_huffman_code(
r,
&mut l,
LITLEN_TABLE,
flags,
&mut in_iter,
|_r, l, symbol| {
l.counter = symbol as u32;
Action::Jump(WriteSymbol)
},
)
} else if
// If there is enough space, use the fast inner decompression
// function.
out_buf.bytes_left() >= 259 &&
in_iter.len() >= 14
{
let (status, new_state) = decompress_fast(
r,
&mut in_iter,
&mut out_buf,
flags,
&mut l,
out_buf_size_mask,
);
state = new_state;
if status == TINFLStatus::Done {
Action::Jump(new_state)
} else {
Action::End(status)
}
} else {
fill_bit_buffer(&mut l, &mut in_iter);
if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
l.counter = symbol as u32;
l.bit_buf >>= code_len;
l.num_bits -= code_len;
if (l.counter & 256) != 0 {
// The symbol is not a literal.
Action::Jump(HuffDecodeOuterLoop1)
} else {
// If we have a 32-bit buffer we need to read another two bytes now
// to have enough bits to keep going.
if cfg!(not(target_pointer_width = "64")) {
fill_bit_buffer(&mut l, &mut in_iter);
}
if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) {
l.bit_buf >>= code_len;
l.num_bits -= code_len;
// The previous symbol was a literal, so write it directly and check
// the next one.
out_buf.write_byte(l.counter as u8);
if (symbol & 256) != 0 {
l.counter = symbol as u32;
// The symbol is a length value.
Action::Jump(HuffDecodeOuterLoop1)
} else {
// The symbol is a literal, so write it directly and continue.
out_buf.write_byte(symbol as u8);
Action::None
}
} else {
Action::Jump(InvalidCodeLen)
}
}
} else {
Action::Jump(InvalidCodeLen)
}
}
}),
WriteSymbol => generate_state!(state, 'state_machine, {
if l.counter >= 256 {
Action::Jump(HuffDecodeOuterLoop1)
} else if out_buf.bytes_left() > 0 {
out_buf.write_byte(l.counter as u8);
Action::Jump(DecodeLitlen)
} else {
Action::End(TINFLStatus::HasMoreOutput)
}
}),
HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, {
// Mask the top bits since they may contain length info.
l.counter &= 511;
if l.counter
== 256 {
// We hit the end of block symbol.
Action::Jump(BlockDone)
} else if l.counter > 285 {
// Invalid code.
// We already verified earlier that the code is > 256.
Action::Jump(InvalidLitlen)
} else {
// # Optimization
// Mask the value to avoid bounds checks
// We could use get_unchecked later if can statically verify that
// this will never go out of bounds.
l.num_extra =
u32::from(LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]);
// Length and distance codes have a number of extra bits depending on
// the base, which together with the base gives us the exact value.
if l.num_extra != 0 {
Action::Jump(ReadExtraBitsLitlen)
} else {
Action::Jump(DecodeDistance)
}
}
}),
ReadExtraBitsLitlen => generate_state!(state, 'state_machine, {
let num_extra = l.num_extra;
read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| {
l.counter += extra_bits as u32;
Action::Jump(DecodeDistance)
})
}),
DecodeDistance => generate_state!(state, 'state_machine, {
// Try to read a huffman code from the input buffer and look up what
// length code the decoded symbol refers to.
decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| {
if symbol > 29 {
// Invalid distance code.
return Action::Jump(InvalidDist)
}
// # Optimization
// Mask the value to avoid bounds checks
// We could use get_unchecked later if can statically verify that
// this will never go out of bounds.
l.num_extra = u32::from(DIST_EXTRA[symbol as usize & BASE_EXTRA_MASK]);
l.dist = u32::from(DIST_BASE[symbol as usize & BASE_EXTRA_MASK]);
if l.num_extra != 0 {
// ReadEXTRA_BITS_DISTACNE
Action::Jump(ReadExtraBitsDistance)
} else {
Action::Jump(HuffDecodeOuterLoop2)
}
})
}),
ReadExtraBitsDistance => generate_state!(state, 'state_machine, {
let num_extra = l.num_extra;
read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| {
l.dist += extra_bits as u32;
Action::Jump(HuffDecodeOuterLoop2)
})
}),
HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, {
if l.dist as usize > out_buf.position() &&
(flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)
{
// We encountered a distance that refers a position before
// the start of the decoded data, so we can't continue.
Action::Jump(DistanceOutOfBounds)
} else {
let out_pos = out_buf.position();
let source_pos = out_buf.position()
.wrapping_sub(l.dist as usize) & out_buf_size_mask;
let out_len = out_buf.get_ref().len() as usize;
let match_end_pos = out_buf.position() + l.counter as usize;
if match_end_pos > out_len ||
// miniz doesn't do this check here. Not sure how it makes sure
// that this case doesn't happen.
(source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize)
{
// Not enough space for all of the data in the output buffer,
// so copy what we have space for.
if l.counter == 0 {
Action::Jump(DecodeLitlen)
} else {
Action::Jump(WriteLenBytesToEnd)
}
} else {
apply_match(
out_buf.get_mut(),
out_pos,
l.dist as usize,
l.counter as usize,
out_buf_size_mask
);
out_buf.set_position(out_pos + l.counter as usize);
Action::Jump(DecodeLitlen)
}
}
}),
WriteLenBytesToEnd => generate_state!(state, 'state_machine, {
if out_buf.bytes_left() > 0 {
let out_pos = out_buf.position();
let source_pos = out_buf.position()
.wrapping_sub(l.dist as usize) & out_buf_size_mask;
let len = cmp::min(out_buf.bytes_left(), l.counter as usize);
transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask);
out_buf.set_position(out_pos + len);
l.counter -= len as u32;
if l.counter == 0 {
Action::Jump(DecodeLitlen)
} else {
Action::None
}
} else {
Action::End(TINFLStatus::HasMoreOutput)
}
}),
BlockDone => generate_state!(state, 'state_machine, {
// End once we've read the last block.
if r.finish != 0 {
pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None);
let in_consumed = in_buf.len() - in_iter.len();
let undo = undo_bytes(&mut l, in_consumed as u32) as usize;
in_iter = in_buf[in_consumed - undo..].iter();
l.bit_buf &= ((1 as BitBuffer) << l.num_bits) - 1;
debug_assert_eq!(l.num_bits, 0);
if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 {
l.counter = 0;
Action::Jump(ReadAdler32)
} else {
Action::Jump(DoneForever)
}
} else {
Action::Jump(ReadBlockHeader)
}
}),
ReadAdler32 => generate_state!(state, 'state_machine, {
if l.counter < 4 {
if l.num_bits != 0 {
read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| {
r.z_adler32 <<= 8;
r.z_adler32 |= bits as u32;
l.counter += 1;
Action::None
})
} else {
read_byte(&mut in_iter, flags, |byte| {
r.z_adler32 <<= 8;
r.z_adler32 |= u32::from(byte);
l.counter += 1;
Action::None
})
}
} else {
Action::Jump(DoneForever)
}
}),
// We are done.
DoneForever => break TINFLStatus::Done,
// Anything else indicates failure.
// BadZlibHeader | BadRawLength | BadDistOrLiteralTableLength | BlockTypeUnexpected |
// DistanceOutOfBounds |
// BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen |
// InvalidDist | InvalidCodeLen
_ => break TINFLStatus::Failed,
};
};
let in_undo = if status != TINFLStatus::NeedsMoreInput
&& status != TINFLStatus::FailedCannotMakeProgress
{
undo_bytes(&mut l, (in_buf.len() - in_iter.len()) as u32) as usize
} else {
0
};
// Make sure HasMoreOutput overrides NeedsMoreInput if the output buffer is full.
// (Unless the missing input is the adler32 value in which case we don't need to write anything.)
// TODO: May want to see if we can do this in a better way.
if status == TINFLStatus::NeedsMoreInput
&& out_buf.bytes_left() == 0
&& state != State::ReadAdler32
{
status = TINFLStatus::HasMoreOutput
}
r.state = state;
r.bit_buf = l.bit_buf;
r.num_bits = l.num_bits;
r.dist = l.dist;
r.counter = l.counter;
r.num_extra = l.num_extra;
r.bit_buf &= ((1 as BitBuffer) << r.num_bits) - 1;
// If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if
// requested.
let need_adler = if (flags & TINFL_FLAG_IGNORE_ADLER32) == 0 {
flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0
} else {
// If TINFL_FLAG_IGNORE_ADLER32 is enabled, ignore the checksum.
false
};
if need_adler && status as i32 >= 0 {
let out_buf_pos = out_buf.position();
r.check_adler32 = update_adler32(r.check_adler32, &out_buf.get_ref()[out_pos..out_buf_pos]);
// disabled so that random input from fuzzer would not be rejected early,
// before it has a chance to reach interesting parts of code
if !cfg!(fuzzing) {
// Once we are done, check if the checksum matches with the one provided in the zlib header.
if status == TINFLStatus::Done
&& flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0
&& r.check_adler32 != r.z_adler32
{
status = TINFLStatus::Adler32Mismatch;
}
}
}
(
status,
in_buf.len() - in_iter.len() - in_undo,
out_buf.position() - out_pos,
)
}
#[cfg(test)]
mod test {
use super::*;
//TODO: Fix these.
fn tinfl_decompress_oxide<'i>(
r: &mut DecompressorOxide,
input_buffer: &'i [u8],
output_buffer: &mut [u8],
flags: u32,
) -> (TINFLStatus, &'i [u8], usize) {
let (status, in_pos, out_pos) = decompress(r, input_buffer, output_buffer, 0, flags);
(status, &input_buffer[in_pos..], out_pos)
}
#[test]
fn decompress_zlib() {
let encoded = [
120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19,
];
let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER;
let mut b = DecompressorOxide::new();
const LEN: usize = 32;
let mut b_buf = vec![0; LEN];
// This should fail with the out buffer being to small.
let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);
assert_eq!(b_status.0, TINFLStatus::Failed);
let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
b = DecompressorOxide::new();
// With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail.
let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);
assert_eq!(b_buf[..b_status.2], b"Hello, zlib!"[..]);
assert_eq!(b_status.0, TINFLStatus::Done);
}
#[test]
fn raw_block() {
const LEN: usize = 64;
let text = b"Hello, zlib!";
let encoded = {
let len = text.len();
let notlen = !len;
let mut encoded = vec![
1,
len as u8,
(len >> 8) as u8,
notlen as u8,
(notlen >> 8) as u8,
];
encoded.extend_from_slice(&text[..]);
encoded
};
//let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER |
let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
let mut b = DecompressorOxide::new();
let mut b_buf = vec![0; LEN];
let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags);
assert_eq!(b_buf[..b_status.2], text[..]);
assert_eq!(b_status.0, TINFLStatus::Done);
}
fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) {
let ret = table.lookup(bit_buf).unwrap();
(ret.0 & 511, ret.1)
}
#[test]
fn fixed_table_lookup() {
let mut d = DecompressorOxide::new();
d.block_type = 1;
start_static_table(&mut d);
let mut l = LocalVars {
bit_buf: d.bit_buf,
num_bits: d.num_bits,
dist: d.dist,
counter: d.counter,
num_extra: d.num_extra,
};
init_tree(&mut d, &mut l);
let llt = &d.tables[LITLEN_TABLE];
let dt = &d.tables[DIST_TABLE];
assert_eq!(masked_lookup(llt, 0b00001100), (0, 8));
assert_eq!(masked_lookup(llt, 0b00011110), (72, 8));
assert_eq!(masked_lookup(llt, 0b01011110), (74, 8));
assert_eq!(masked_lookup(llt, 0b11111101), (143, 8));
assert_eq!(masked_lookup(llt, 0b000010011), (144, 9));
assert_eq!(masked_lookup(llt, 0b111111111), (255, 9));
assert_eq!(masked_lookup(llt, 0b00000000), (256, 7));
assert_eq!(masked_lookup(llt, 0b1110100), (279, 7));
assert_eq!(masked_lookup(llt, 0b00000011), (280, 8));
assert_eq!(masked_lookup(llt, 0b11100011), (287, 8));
assert_eq!(masked_lookup(dt, 0), (0, 5));
assert_eq!(masked_lookup(dt, 20), (5, 5));
}
fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) {
let mut r = DecompressorOxide::default();
let mut output_buf = vec![0; 1024 * 32];
let flags = if zlib {
inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER
} else {
0
} | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF
| TINFL_FLAG_HAS_MORE_INPUT;
let (d_status, _in_bytes, _out_bytes) =
decompress(&mut r, input, &mut output_buf, 0, flags);
assert_eq!(expected_status, d_status);
assert_eq!(expected_state, r.state);
}
#[test]
fn bogus_input() {
use self::check_result as cr;
const F: TINFLStatus = TINFLStatus::Failed;
const OK: TINFLStatus = TINFLStatus::Done;
// Bad CM.
cr(&[0x77, 0x85], F, State::BadZlibHeader, true);
// Bad window size (but check is correct).
cr(&[0x88, 0x98], F, State::BadZlibHeader, true);
// Bad check bits.
cr(&[0x78, 0x98], F, State::BadZlibHeader, true);
// Too many code lengths. (From inflate library issues)
cr(
b"M\xff\xffM*\xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM",
F,
State::BadDistOrLiteralTableLength,
false,
);
// Bad CLEN (also from inflate library issues)
cr(
b"\xdd\xff\xff*M\x94ffffffffff",
F,
State::BadDistOrLiteralTableLength,
false,
);
// Port of inflate coverage tests from zlib-ng
// https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c
let c = |a, b, c| cr(a, b, c, false);
// Invalid uncompressed/raw block length.
c(&[0, 0, 0, 0, 0], F, State::BadRawLength);
// Ok empty uncompressed block.
c(&[3, 0], OK, State::DoneForever);
// Invalid block type.
c(&[6], F, State::BlockTypeUnexpected);
// Ok uncompressed block.
c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever);
// Too many litlens, we handle this later than zlib, so this test won't
// give the same result.
// c(&[0xfc, 0, 0], F, State::BadTotalSymbols);
// Invalid set of code lengths - TODO Check if this is the correct error for this.
c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols);
// Invalid repeat in list of code lengths.
// (Try to repeat a non-existent code.)
c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup);
// Missing end of block code (should we have a separate error for this?) - fails on further input
// c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols);
// Invalid set of literals/lengths
c(
&[
4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0,
],
F,
State::BadTotalSymbols,
);
// Invalid set of distances _ needsmoreinput
// c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols);
// Invalid distance code
c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist);
// Distance refers to position before the start
c(
&[0x0c, 0xc0, 0x81, 0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0],
F,
State::DistanceOutOfBounds,
);
// Trailer
// Bad gzip trailer checksum GZip header not handled by miniz_oxide
//cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false)
// Bad gzip trailer length
//cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false)
}
#[test]
fn empty_output_buffer_non_wrapping() {
let encoded = [
120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19,
];
let flags = TINFL_FLAG_COMPUTE_ADLER32
| TINFL_FLAG_PARSE_ZLIB_HEADER
| TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
let mut r = DecompressorOxide::new();
let mut output_buf = vec![];
// Check that we handle an empty buffer properly and not panicking.
// https://github.com/Frommi/miniz_oxide/issues/23
let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags);
assert_eq!(res, (TINFLStatus::HasMoreOutput, 4, 0));
}
#[test]
fn empty_output_buffer_wrapping() {
let encoded = [
0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00,
];
let flags = TINFL_FLAG_COMPUTE_ADLER32;
let mut r = DecompressorOxide::new();
let mut output_buf = vec![];
// Check that we handle an empty buffer properly and not panicking.
// https://github.com/Frommi/miniz_oxide/issues/23
let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags);
assert_eq!(res, (TINFLStatus::HasMoreOutput, 2, 0));
}
}