1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
#![cfg_attr(not(feature = "full"), allow(dead_code))]
//! An intrusive double linked list of data.
//!
//! The data structure supports tracking pinned nodes. Most of the data
//! structure's APIs are `unsafe` as they require the caller to ensure the
//! specified node is actually contained by the list.
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::{PhantomData, PhantomPinned};
use core::mem::ManuallyDrop;
use core::ptr::{self, NonNull};
/// An intrusive linked list.
///
/// Currently, the list is not emptied on drop. It is the caller's
/// responsibility to ensure the list is empty before dropping it.
pub(crate) struct LinkedList<L, T> {
/// Linked list head
head: Option<NonNull<T>>,
/// Linked list tail
tail: Option<NonNull<T>>,
/// Node type marker.
_marker: PhantomData<*const L>,
}
unsafe impl<L: Link> Send for LinkedList<L, L::Target> where L::Target: Send {}
unsafe impl<L: Link> Sync for LinkedList<L, L::Target> where L::Target: Sync {}
/// Defines how a type is tracked within a linked list.
///
/// In order to support storing a single type within multiple lists, accessing
/// the list pointers is decoupled from the entry type.
///
/// # Safety
///
/// Implementations must guarantee that `Target` types are pinned in memory. In
/// other words, when a node is inserted, the value will not be moved as long as
/// it is stored in the list.
pub(crate) unsafe trait Link {
/// Handle to the list entry.
///
/// This is usually a pointer-ish type.
type Handle;
/// Node type.
type Target;
/// Convert the handle to a raw pointer without consuming the handle.
#[allow(clippy::wrong_self_convention)]
fn as_raw(handle: &Self::Handle) -> NonNull<Self::Target>;
/// Convert the raw pointer to a handle
unsafe fn from_raw(ptr: NonNull<Self::Target>) -> Self::Handle;
/// Return the pointers for a node
///
/// # Safety
///
/// The resulting pointer should have the same tag in the stacked-borrows
/// stack as the argument. In particular, the method may not create an
/// intermediate reference in the process of creating the resulting raw
/// pointer.
unsafe fn pointers(target: NonNull<Self::Target>) -> NonNull<Pointers<Self::Target>>;
}
/// Previous / next pointers.
pub(crate) struct Pointers<T> {
inner: UnsafeCell<PointersInner<T>>,
}
/// We do not want the compiler to put the `noalias` attribute on mutable
/// references to this type, so the type has been made `!Unpin` with a
/// `PhantomPinned` field.
///
/// Additionally, we never access the `prev` or `next` fields directly, as any
/// such access would implicitly involve the creation of a reference to the
/// field, which we want to avoid since the fields are not `!Unpin`, and would
/// hence be given the `noalias` attribute if we were to do such an access.
/// As an alternative to accessing the fields directly, the `Pointers` type
/// provides getters and setters for the two fields, and those are implemented
/// using raw pointer casts and offsets, which is valid since the struct is
/// #[repr(C)].
///
/// See this link for more information:
/// <https://github.com/rust-lang/rust/pull/82834>
#[repr(C)]
struct PointersInner<T> {
/// The previous node in the list. null if there is no previous node.
///
/// This field is accessed through pointer manipulation, so it is not dead code.
#[allow(dead_code)]
prev: Option<NonNull<T>>,
/// The next node in the list. null if there is no previous node.
///
/// This field is accessed through pointer manipulation, so it is not dead code.
#[allow(dead_code)]
next: Option<NonNull<T>>,
/// This type is !Unpin due to the heuristic from:
/// <https://github.com/rust-lang/rust/pull/82834>
_pin: PhantomPinned,
}
unsafe impl<T: Send> Send for Pointers<T> {}
unsafe impl<T: Sync> Sync for Pointers<T> {}
// ===== impl LinkedList =====
impl<L, T> LinkedList<L, T> {
/// Creates an empty linked list.
pub(crate) const fn new() -> LinkedList<L, T> {
LinkedList {
head: None,
tail: None,
_marker: PhantomData,
}
}
}
impl<L: Link> LinkedList<L, L::Target> {
/// Adds an element first in the list.
pub(crate) fn push_front(&mut self, val: L::Handle) {
// The value should not be dropped, it is being inserted into the list
let val = ManuallyDrop::new(val);
let ptr = L::as_raw(&val);
assert_ne!(self.head, Some(ptr));
unsafe {
L::pointers(ptr).as_mut().set_next(self.head);
L::pointers(ptr).as_mut().set_prev(None);
if let Some(head) = self.head {
L::pointers(head).as_mut().set_prev(Some(ptr));
}
self.head = Some(ptr);
if self.tail.is_none() {
self.tail = Some(ptr);
}
}
}
/// Removes the last element from a list and returns it, or None if it is
/// empty.
pub(crate) fn pop_back(&mut self) -> Option<L::Handle> {
unsafe {
let last = self.tail?;
self.tail = L::pointers(last).as_ref().get_prev();
if let Some(prev) = L::pointers(last).as_ref().get_prev() {
L::pointers(prev).as_mut().set_next(None);
} else {
self.head = None
}
L::pointers(last).as_mut().set_prev(None);
L::pointers(last).as_mut().set_next(None);
Some(L::from_raw(last))
}
}
/// Returns whether the linked list does not contain any node
pub(crate) fn is_empty(&self) -> bool {
if self.head.is_some() {
return false;
}
assert!(self.tail.is_none());
true
}
/// Removes the specified node from the list
///
/// # Safety
///
/// The caller **must** ensure that exactly one of the following is true:
/// - `node` is currently contained by `self`,
/// - `node` is not contained by any list,
/// - `node` is currently contained by some other `GuardedLinkedList` **and**
/// the caller has an exclusive access to that list. This condition is
/// used by the linked list in `sync::Notify`.
pub(crate) unsafe fn remove(&mut self, node: NonNull<L::Target>) -> Option<L::Handle> {
if let Some(prev) = L::pointers(node).as_ref().get_prev() {
debug_assert_eq!(L::pointers(prev).as_ref().get_next(), Some(node));
L::pointers(prev)
.as_mut()
.set_next(L::pointers(node).as_ref().get_next());
} else {
if self.head != Some(node) {
return None;
}
self.head = L::pointers(node).as_ref().get_next();
}
if let Some(next) = L::pointers(node).as_ref().get_next() {
debug_assert_eq!(L::pointers(next).as_ref().get_prev(), Some(node));
L::pointers(next)
.as_mut()
.set_prev(L::pointers(node).as_ref().get_prev());
} else {
// This might be the last item in the list
if self.tail != Some(node) {
return None;
}
self.tail = L::pointers(node).as_ref().get_prev();
}
L::pointers(node).as_mut().set_next(None);
L::pointers(node).as_mut().set_prev(None);
Some(L::from_raw(node))
}
}
impl<L: Link> fmt::Debug for LinkedList<L, L::Target> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("LinkedList")
.field("head", &self.head)
.field("tail", &self.tail)
.finish()
}
}
#[cfg(any(
feature = "fs",
feature = "rt",
all(unix, feature = "process"),
feature = "signal",
feature = "sync",
))]
impl<L: Link> LinkedList<L, L::Target> {
pub(crate) fn last(&self) -> Option<&L::Target> {
let tail = self.tail.as_ref()?;
unsafe { Some(&*tail.as_ptr()) }
}
}
impl<L: Link> Default for LinkedList<L, L::Target> {
fn default() -> Self {
Self::new()
}
}
// ===== impl DrainFilter =====
cfg_io_readiness! {
pub(crate) struct DrainFilter<'a, T: Link, F> {
list: &'a mut LinkedList<T, T::Target>,
filter: F,
curr: Option<NonNull<T::Target>>,
}
impl<T: Link> LinkedList<T, T::Target> {
pub(crate) fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F>
where
F: FnMut(&mut T::Target) -> bool,
{
let curr = self.head;
DrainFilter {
curr,
filter,
list: self,
}
}
}
impl<'a, T, F> Iterator for DrainFilter<'a, T, F>
where
T: Link,
F: FnMut(&mut T::Target) -> bool,
{
type Item = T::Handle;
fn next(&mut self) -> Option<Self::Item> {
while let Some(curr) = self.curr {
// safety: the pointer references data contained by the list
self.curr = unsafe { T::pointers(curr).as_ref() }.get_next();
// safety: the value is still owned by the linked list.
if (self.filter)(unsafe { &mut *curr.as_ptr() }) {
return unsafe { self.list.remove(curr) };
}
}
None
}
}
}
// ===== impl GuardedLinkedList =====
feature! {
#![any(
feature = "process",
feature = "sync",
feature = "rt",
feature = "signal",
)]
/// An intrusive linked list, but instead of keeping pointers to the head
/// and tail nodes, it uses a special guard node linked with those nodes.
/// It means that the list is circular and every pointer of a node from
/// the list is not `None`, including pointers from the guard node.
///
/// If a list is empty, then both pointers of the guard node are pointing
/// at the guard node itself.
pub(crate) struct GuardedLinkedList<L, T> {
/// Pointer to the guard node.
guard: NonNull<T>,
/// Node type marker.
_marker: PhantomData<*const L>,
}
impl<U, L: Link<Handle = NonNull<U>>> LinkedList<L, L::Target> {
/// Turns a linked list into the guarded version by linking the guard node
/// with the head and tail nodes. Like with other nodes, you should guarantee
/// that the guard node is pinned in memory.
pub(crate) fn into_guarded(self, guard_handle: L::Handle) -> GuardedLinkedList<L, L::Target> {
// `guard_handle` is a NonNull pointer, we don't have to care about dropping it.
let guard = L::as_raw(&guard_handle);
unsafe {
if let Some(head) = self.head {
debug_assert!(L::pointers(head).as_ref().get_prev().is_none());
L::pointers(head).as_mut().set_prev(Some(guard));
L::pointers(guard).as_mut().set_next(Some(head));
// The list is not empty, so the tail cannot be `None`.
let tail = self.tail.unwrap();
debug_assert!(L::pointers(tail).as_ref().get_next().is_none());
L::pointers(tail).as_mut().set_next(Some(guard));
L::pointers(guard).as_mut().set_prev(Some(tail));
} else {
// The list is empty.
L::pointers(guard).as_mut().set_prev(Some(guard));
L::pointers(guard).as_mut().set_next(Some(guard));
}
}
GuardedLinkedList { guard, _marker: PhantomData }
}
}
impl<L: Link> GuardedLinkedList<L, L::Target> {
fn tail(&self) -> Option<NonNull<L::Target>> {
let tail_ptr = unsafe {
L::pointers(self.guard).as_ref().get_prev().unwrap()
};
// Compare the tail pointer with the address of the guard node itself.
// If the guard points at itself, then there are no other nodes and
// the list is considered empty.
if tail_ptr != self.guard {
Some(tail_ptr)
} else {
None
}
}
/// Removes the last element from a list and returns it, or None if it is
/// empty.
pub(crate) fn pop_back(&mut self) -> Option<L::Handle> {
unsafe {
let last = self.tail()?;
let before_last = L::pointers(last).as_ref().get_prev().unwrap();
L::pointers(self.guard).as_mut().set_prev(Some(before_last));
L::pointers(before_last).as_mut().set_next(Some(self.guard));
L::pointers(last).as_mut().set_prev(None);
L::pointers(last).as_mut().set_next(None);
Some(L::from_raw(last))
}
}
}
}
// ===== impl Pointers =====
impl<T> Pointers<T> {
/// Create a new set of empty pointers
pub(crate) fn new() -> Pointers<T> {
Pointers {
inner: UnsafeCell::new(PointersInner {
prev: None,
next: None,
_pin: PhantomPinned,
}),
}
}
pub(crate) fn get_prev(&self) -> Option<NonNull<T>> {
// SAFETY: prev is the first field in PointersInner, which is #[repr(C)].
unsafe {
let inner = self.inner.get();
let prev = inner as *const Option<NonNull<T>>;
ptr::read(prev)
}
}
pub(crate) fn get_next(&self) -> Option<NonNull<T>> {
// SAFETY: next is the second field in PointersInner, which is #[repr(C)].
unsafe {
let inner = self.inner.get();
let prev = inner as *const Option<NonNull<T>>;
let next = prev.add(1);
ptr::read(next)
}
}
fn set_prev(&mut self, value: Option<NonNull<T>>) {
// SAFETY: prev is the first field in PointersInner, which is #[repr(C)].
unsafe {
let inner = self.inner.get();
let prev = inner as *mut Option<NonNull<T>>;
ptr::write(prev, value);
}
}
fn set_next(&mut self, value: Option<NonNull<T>>) {
// SAFETY: next is the second field in PointersInner, which is #[repr(C)].
unsafe {
let inner = self.inner.get();
let prev = inner as *mut Option<NonNull<T>>;
let next = prev.add(1);
ptr::write(next, value);
}
}
}
impl<T> fmt::Debug for Pointers<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let prev = self.get_prev();
let next = self.get_next();
f.debug_struct("Pointers")
.field("prev", &prev)
.field("next", &next)
.finish()
}
}
#[cfg(any(test, fuzzing))]
#[cfg(not(loom))]
pub(crate) mod tests {
use super::*;
use std::pin::Pin;
#[derive(Debug)]
#[repr(C)]
struct Entry {
pointers: Pointers<Entry>,
val: i32,
}
unsafe impl<'a> Link for &'a Entry {
type Handle = Pin<&'a Entry>;
type Target = Entry;
fn as_raw(handle: &Pin<&'_ Entry>) -> NonNull<Entry> {
NonNull::from(handle.get_ref())
}
unsafe fn from_raw(ptr: NonNull<Entry>) -> Pin<&'a Entry> {
Pin::new_unchecked(&*ptr.as_ptr())
}
unsafe fn pointers(target: NonNull<Entry>) -> NonNull<Pointers<Entry>> {
target.cast()
}
}
fn entry(val: i32) -> Pin<Box<Entry>> {
Box::pin(Entry {
pointers: Pointers::new(),
val,
})
}
fn ptr(r: &Pin<Box<Entry>>) -> NonNull<Entry> {
r.as_ref().get_ref().into()
}
fn collect_list(list: &mut LinkedList<&'_ Entry, <&'_ Entry as Link>::Target>) -> Vec<i32> {
let mut ret = vec![];
while let Some(entry) = list.pop_back() {
ret.push(entry.val);
}
ret
}
fn push_all<'a>(
list: &mut LinkedList<&'a Entry, <&'_ Entry as Link>::Target>,
entries: &[Pin<&'a Entry>],
) {
for entry in entries.iter() {
list.push_front(*entry);
}
}
#[cfg(test)]
macro_rules! assert_clean {
($e:ident) => {{
assert!($e.pointers.get_next().is_none());
assert!($e.pointers.get_prev().is_none());
}};
}
#[cfg(test)]
macro_rules! assert_ptr_eq {
($a:expr, $b:expr) => {{
// Deal with mapping a Pin<&mut T> -> Option<NonNull<T>>
assert_eq!(Some($a.as_ref().get_ref().into()), $b)
}};
}
#[test]
fn const_new() {
const _: LinkedList<&Entry, <&Entry as Link>::Target> = LinkedList::new();
}
#[test]
fn push_and_drain() {
let a = entry(5);
let b = entry(7);
let c = entry(31);
let mut list = LinkedList::new();
assert!(list.is_empty());
list.push_front(a.as_ref());
assert!(!list.is_empty());
list.push_front(b.as_ref());
list.push_front(c.as_ref());
let items: Vec<i32> = collect_list(&mut list);
assert_eq!([5, 7, 31].to_vec(), items);
assert!(list.is_empty());
}
#[test]
fn push_pop_push_pop() {
let a = entry(5);
let b = entry(7);
let mut list = LinkedList::<&Entry, <&Entry as Link>::Target>::new();
list.push_front(a.as_ref());
let entry = list.pop_back().unwrap();
assert_eq!(5, entry.val);
assert!(list.is_empty());
list.push_front(b.as_ref());
let entry = list.pop_back().unwrap();
assert_eq!(7, entry.val);
assert!(list.is_empty());
assert!(list.pop_back().is_none());
}
#[test]
fn remove_by_address() {
let a = entry(5);
let b = entry(7);
let c = entry(31);
unsafe {
// Remove first
let mut list = LinkedList::new();
push_all(&mut list, &[c.as_ref(), b.as_ref(), a.as_ref()]);
assert!(list.remove(ptr(&a)).is_some());
assert_clean!(a);
// `a` should be no longer there and can't be removed twice
assert!(list.remove(ptr(&a)).is_none());
assert!(!list.is_empty());
assert!(list.remove(ptr(&b)).is_some());
assert_clean!(b);
// `b` should be no longer there and can't be removed twice
assert!(list.remove(ptr(&b)).is_none());
assert!(!list.is_empty());
assert!(list.remove(ptr(&c)).is_some());
assert_clean!(c);
// `b` should be no longer there and can't be removed twice
assert!(list.remove(ptr(&c)).is_none());
assert!(list.is_empty());
}
unsafe {
// Remove middle
let mut list = LinkedList::new();
push_all(&mut list, &[c.as_ref(), b.as_ref(), a.as_ref()]);
assert!(list.remove(ptr(&a)).is_some());
assert_clean!(a);
assert_ptr_eq!(b, list.head);
assert_ptr_eq!(c, b.pointers.get_next());
assert_ptr_eq!(b, c.pointers.get_prev());
let items = collect_list(&mut list);
assert_eq!([31, 7].to_vec(), items);
}
unsafe {
// Remove middle
let mut list = LinkedList::new();
push_all(&mut list, &[c.as_ref(), b.as_ref(), a.as_ref()]);
assert!(list.remove(ptr(&b)).is_some());
assert_clean!(b);
assert_ptr_eq!(c, a.pointers.get_next());
assert_ptr_eq!(a, c.pointers.get_prev());
let items = collect_list(&mut list);
assert_eq!([31, 5].to_vec(), items);
}
unsafe {
// Remove last
// Remove middle
let mut list = LinkedList::new();
push_all(&mut list, &[c.as_ref(), b.as_ref(), a.as_ref()]);
assert!(list.remove(ptr(&c)).is_some());
assert_clean!(c);
assert!(b.pointers.get_next().is_none());
assert_ptr_eq!(b, list.tail);
let items = collect_list(&mut list);
assert_eq!([7, 5].to_vec(), items);
}
unsafe {
// Remove first of two
let mut list = LinkedList::new();
push_all(&mut list, &[b.as_ref(), a.as_ref()]);
assert!(list.remove(ptr(&a)).is_some());
assert_clean!(a);
// a should be no longer there and can't be removed twice
assert!(list.remove(ptr(&a)).is_none());
assert_ptr_eq!(b, list.head);
assert_ptr_eq!(b, list.tail);
assert!(b.pointers.get_next().is_none());
assert!(b.pointers.get_prev().is_none());
let items = collect_list(&mut list);
assert_eq!([7].to_vec(), items);
}
unsafe {
// Remove last of two
let mut list = LinkedList::new();
push_all(&mut list, &[b.as_ref(), a.as_ref()]);
assert!(list.remove(ptr(&b)).is_some());
assert_clean!(b);
assert_ptr_eq!(a, list.head);
assert_ptr_eq!(a, list.tail);
assert!(a.pointers.get_next().is_none());
assert!(a.pointers.get_prev().is_none());
let items = collect_list(&mut list);
assert_eq!([5].to_vec(), items);
}
unsafe {
// Remove last item
let mut list = LinkedList::new();
push_all(&mut list, &[a.as_ref()]);
assert!(list.remove(ptr(&a)).is_some());
assert_clean!(a);
assert!(list.head.is_none());
assert!(list.tail.is_none());
let items = collect_list(&mut list);
assert!(items.is_empty());
}
unsafe {
// Remove missing
let mut list = LinkedList::<&Entry, <&Entry as Link>::Target>::new();
list.push_front(b.as_ref());
list.push_front(a.as_ref());
assert!(list.remove(ptr(&c)).is_none());
}
}
/// This is a fuzz test. You run it by entering `cargo fuzz run fuzz_linked_list` in CLI in `/tokio/` module.
#[cfg(fuzzing)]
pub fn fuzz_linked_list(ops: &[u8]) {
enum Op {
Push,
Pop,
Remove(usize),
}
use std::collections::VecDeque;
let ops = ops
.iter()
.map(|i| match i % 3u8 {
0 => Op::Push,
1 => Op::Pop,
2 => Op::Remove((i / 3u8) as usize),
_ => unreachable!(),
})
.collect::<Vec<_>>();
let mut ll = LinkedList::<&Entry, <&Entry as Link>::Target>::new();
let mut reference = VecDeque::new();
let entries: Vec<_> = (0..ops.len()).map(|i| entry(i as i32)).collect();
for (i, op) in ops.iter().enumerate() {
match op {
Op::Push => {
reference.push_front(i as i32);
assert_eq!(entries[i].val, i as i32);
ll.push_front(entries[i].as_ref());
}
Op::Pop => {
if reference.is_empty() {
assert!(ll.is_empty());
continue;
}
let v = reference.pop_back();
assert_eq!(v, ll.pop_back().map(|v| v.val));
}
Op::Remove(n) => {
if reference.is_empty() {
assert!(ll.is_empty());
continue;
}
let idx = n % reference.len();
let expect = reference.remove(idx).unwrap();
unsafe {
let entry = ll.remove(ptr(&entries[expect as usize])).unwrap();
assert_eq!(expect, entry.val);
}
}
}
}
}
}