1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#[cfg(any(feature = "alloc", feature = "std", test))]
use alloc::string::String;
use core::cmp;
#[cfg(any(feature = "alloc", feature = "std", test))]
use core::str;

use crate::encode::add_padding;
use crate::engine::{Config, Engine};

/// The output mechanism for ChunkedEncoder's encoded bytes.
pub trait Sink {
    type Error;

    /// Handle a chunk of encoded base64 data (as UTF-8 bytes)
    fn write_encoded_bytes(&mut self, encoded: &[u8]) -> Result<(), Self::Error>;
}

const BUF_SIZE: usize = 1024;

/// A base64 encoder that emits encoded bytes in chunks without heap allocation.
pub struct ChunkedEncoder<'e, E: Engine + ?Sized> {
    engine: &'e E,
    max_input_chunk_len: usize,
}

impl<'e, E: Engine + ?Sized> ChunkedEncoder<'e, E> {
    pub fn new(engine: &'e E) -> ChunkedEncoder<'e, E> {
        ChunkedEncoder {
            engine,
            max_input_chunk_len: max_input_length(BUF_SIZE, engine.config().encode_padding()),
        }
    }

    pub fn encode<S: Sink>(&self, bytes: &[u8], sink: &mut S) -> Result<(), S::Error> {
        let mut encode_buf: [u8; BUF_SIZE] = [0; BUF_SIZE];
        let mut input_index = 0;

        while input_index < bytes.len() {
            // either the full input chunk size, or it's the last iteration
            let input_chunk_len = cmp::min(self.max_input_chunk_len, bytes.len() - input_index);

            let chunk = &bytes[input_index..(input_index + input_chunk_len)];

            let mut b64_bytes_written = self.engine.internal_encode(chunk, &mut encode_buf);

            input_index += input_chunk_len;
            let more_input_left = input_index < bytes.len();

            if self.engine.config().encode_padding() && !more_input_left {
                // no more input, add padding if needed. Buffer will have room because
                // max_input_length leaves room for it.
                b64_bytes_written += add_padding(bytes.len(), &mut encode_buf[b64_bytes_written..]);
            }

            sink.write_encoded_bytes(&encode_buf[0..b64_bytes_written])?;
        }

        Ok(())
    }
}

/// Calculate the longest input that can be encoded for the given output buffer size.
///
/// If the config requires padding, two bytes of buffer space will be set aside so that the last
/// chunk of input can be encoded safely.
///
/// The input length will always be a multiple of 3 so that no encoding state has to be carried over
/// between chunks.
fn max_input_length(encoded_buf_len: usize, padded: bool) -> usize {
    let effective_buf_len = if padded {
        // make room for padding
        encoded_buf_len
            .checked_sub(2)
            .expect("Don't use a tiny buffer")
    } else {
        encoded_buf_len
    };

    // No padding, so just normal base64 expansion.
    (effective_buf_len / 4) * 3
}

// A really simple sink that just appends to a string
#[cfg(any(feature = "alloc", feature = "std", test))]
pub(crate) struct StringSink<'a> {
    string: &'a mut String,
}

#[cfg(any(feature = "alloc", feature = "std", test))]
impl<'a> StringSink<'a> {
    pub(crate) fn new(s: &mut String) -> StringSink {
        StringSink { string: s }
    }
}

#[cfg(any(feature = "alloc", feature = "std", test))]
impl<'a> Sink for StringSink<'a> {
    type Error = ();

    fn write_encoded_bytes(&mut self, s: &[u8]) -> Result<(), Self::Error> {
        self.string.push_str(str::from_utf8(s).unwrap());

        Ok(())
    }
}

#[cfg(test)]
pub mod tests {
    use rand::{
        distributions::{Distribution, Uniform},
        Rng, SeedableRng,
    };

    use crate::{
        alphabet::STANDARD,
        engine::general_purpose::{GeneralPurpose, GeneralPurposeConfig, PAD},
        tests::random_engine,
    };

    use super::*;

    #[test]
    fn chunked_encode_empty() {
        assert_eq!("", chunked_encode_str(&[], PAD));
    }

    #[test]
    fn chunked_encode_intermediate_fast_loop() {
        // > 8 bytes input, will enter the pretty fast loop
        assert_eq!("Zm9vYmFyYmF6cXV4", chunked_encode_str(b"foobarbazqux", PAD));
    }

    #[test]
    fn chunked_encode_fast_loop() {
        // > 32 bytes input, will enter the uber fast loop
        assert_eq!(
            "Zm9vYmFyYmF6cXV4cXV1eGNvcmdlZ3JhdWx0Z2FycGx5eg==",
            chunked_encode_str(b"foobarbazquxquuxcorgegraultgarplyz", PAD)
        );
    }

    #[test]
    fn chunked_encode_slow_loop_only() {
        // < 8 bytes input, slow loop only
        assert_eq!("Zm9vYmFy", chunked_encode_str(b"foobar", PAD));
    }

    #[test]
    fn chunked_encode_matches_normal_encode_random_string_sink() {
        let helper = StringSinkTestHelper;
        chunked_encode_matches_normal_encode_random(&helper);
    }

    #[test]
    fn max_input_length_no_pad() {
        assert_eq!(768, max_input_length(1024, false));
    }

    #[test]
    fn max_input_length_with_pad_decrements_one_triple() {
        assert_eq!(765, max_input_length(1024, true));
    }

    #[test]
    fn max_input_length_with_pad_one_byte_short() {
        assert_eq!(765, max_input_length(1025, true));
    }

    #[test]
    fn max_input_length_with_pad_fits_exactly() {
        assert_eq!(768, max_input_length(1026, true));
    }

    #[test]
    fn max_input_length_cant_use_extra_single_encoded_byte() {
        assert_eq!(300, max_input_length(401, false));
    }

    pub fn chunked_encode_matches_normal_encode_random<S: SinkTestHelper>(sink_test_helper: &S) {
        let mut input_buf: Vec<u8> = Vec::new();
        let mut output_buf = String::new();
        let mut rng = rand::rngs::SmallRng::from_entropy();
        let input_len_range = Uniform::new(1, 10_000);

        for _ in 0..5_000 {
            input_buf.clear();
            output_buf.clear();

            let buf_len = input_len_range.sample(&mut rng);
            for _ in 0..buf_len {
                input_buf.push(rng.gen());
            }

            let engine = random_engine(&mut rng);

            let chunk_encoded_string = sink_test_helper.encode_to_string(&engine, &input_buf);
            engine.encode_string(&input_buf, &mut output_buf);

            assert_eq!(output_buf, chunk_encoded_string, "input len={}", buf_len);
        }
    }

    fn chunked_encode_str(bytes: &[u8], config: GeneralPurposeConfig) -> String {
        let mut s = String::new();

        let mut sink = StringSink::new(&mut s);
        let engine = GeneralPurpose::new(&STANDARD, config);
        let encoder = ChunkedEncoder::new(&engine);
        encoder.encode(bytes, &mut sink).unwrap();

        s
    }

    // An abstraction around sinks so that we can have tests that easily to any sink implementation
    pub trait SinkTestHelper {
        fn encode_to_string<E: Engine>(&self, engine: &E, bytes: &[u8]) -> String;
    }

    struct StringSinkTestHelper;

    impl SinkTestHelper for StringSinkTestHelper {
        fn encode_to_string<E: Engine>(&self, engine: &E, bytes: &[u8]) -> String {
            let encoder = ChunkedEncoder::new(engine);
            let mut s = String::new();
            let mut sink = StringSink::new(&mut s);
            encoder.encode(bytes, &mut sink).unwrap();

            s
        }
    }
}