1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
use crate::convert::*;
use crate::operations::folded_multiply;
use crate::operations::read_small;
use crate::operations::MULTIPLE;
use crate::random_state::PI;
use crate::RandomState;
use core::hash::Hasher;
const ROT: u32 = 23; //17
/// A `Hasher` for hashing an arbitrary stream of bytes.
///
/// Instances of [`AHasher`] represent state that is updated while hashing data.
///
/// Each method updates the internal state based on the new data provided. Once
/// all of the data has been provided, the resulting hash can be obtained by calling
/// `finish()`
///
/// [Clone] is also provided in case you wish to calculate hashes for two different items that
/// start with the same data.
///
#[derive(Debug, Clone)]
pub struct AHasher {
buffer: u64,
pad: u64,
extra_keys: [u64; 2],
}
impl AHasher {
/// Creates a new hasher keyed to the provided key.
#[inline]
#[allow(dead_code)] // Is not called if non-fallback hash is used.
pub(crate) fn new_with_keys(key1: u128, key2: u128) -> AHasher {
let pi: [u128; 2] = PI.convert();
let key1: [u64; 2] = (key1 ^ pi[0]).convert();
let key2: [u64; 2] = (key2 ^ pi[1]).convert();
AHasher {
buffer: key1[0],
pad: key1[1],
extra_keys: key2,
}
}
#[allow(unused)] // False positive
pub(crate) fn test_with_keys(key1: u128, key2: u128) -> Self {
let key1: [u64; 2] = key1.convert();
let key2: [u64; 2] = key2.convert();
Self {
buffer: key1[0],
pad: key1[1],
extra_keys: key2,
}
}
#[inline]
#[allow(dead_code)] // Is not called if non-fallback hash is used.
pub(crate) fn from_random_state(rand_state: &RandomState) -> AHasher {
AHasher {
buffer: rand_state.k0,
pad: rand_state.k1,
extra_keys: [rand_state.k2, rand_state.k3],
}
}
/// This update function has the goal of updating the buffer with a single multiply
/// FxHash does this but is vulnerable to attack. To avoid this input needs to be masked to with an
/// unpredictable value. Other hashes such as murmurhash have taken this approach but were found vulnerable
/// to attack. The attack was based on the idea of reversing the pre-mixing (Which is necessarily
/// reversible otherwise bits would be lost) then placing a difference in the highest bit before the
/// multiply used to mix the data. Because a multiply can never affect the bits to the right of it, a
/// subsequent update that also differed in this bit could result in a predictable collision.
///
/// This version avoids this vulnerability while still only using a single multiply. It takes advantage
/// of the fact that when a 64 bit multiply is performed the upper 64 bits are usually computed and thrown
/// away. Instead it creates two 128 bit values where the upper 64 bits are zeros and multiplies them.
/// (The compiler is smart enough to turn this into a 64 bit multiplication in the assembly)
/// Then the upper bits are xored with the lower bits to produce a single 64 bit result.
///
/// To understand why this is a good scrambling function it helps to understand multiply-with-carry PRNGs:
/// https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator
/// If the multiple is chosen well, this creates a long period, decent quality PRNG.
/// Notice that this function is equivalent to this except the `buffer`/`state` is being xored with each
/// new block of data. In the event that data is all zeros, it is exactly equivalent to a MWC PRNG.
///
/// This is impervious to attack because every bit buffer at the end is dependent on every bit in
/// `new_data ^ buffer`. For example suppose two inputs differed in only the 5th bit. Then when the
/// multiplication is performed the `result` will differ in bits 5-69. More specifically it will differ by
/// 2^5 * MULTIPLE. However in the next step bits 65-128 are turned into a separate 64 bit value. So the
/// differing bits will be in the lower 6 bits of this value. The two intermediate values that differ in
/// bits 5-63 and in bits 0-5 respectively get added together. Producing an output that differs in every
/// bit. The addition carries in the multiplication and at the end additionally mean that the even if an
/// attacker somehow knew part of (but not all) the contents of the buffer before hand,
/// they would not be able to predict any of the bits in the buffer at the end.
#[inline(always)]
fn update(&mut self, new_data: u64) {
self.buffer = folded_multiply(new_data ^ self.buffer, MULTIPLE);
}
/// Similar to the above this function performs an update using a "folded multiply".
/// However it takes in 128 bits of data instead of 64. Both halves must be masked.
///
/// This makes it impossible for an attacker to place a single bit difference between
/// two blocks so as to cancel each other.
///
/// However this is not sufficient. to prevent (a,b) from hashing the same as (b,a) the buffer itself must
/// be updated between calls in a way that does not commute. To achieve this XOR and Rotate are used.
/// Add followed by xor is not the same as xor followed by add, and rotate ensures that the same out bits
/// can't be changed by the same set of input bits. To cancel this sequence with subsequent input would require
/// knowing the keys.
#[inline(always)]
fn large_update(&mut self, new_data: u128) {
let block: [u64; 2] = new_data.convert();
let combined = folded_multiply(block[0] ^ self.extra_keys[0], block[1] ^ self.extra_keys[1]);
self.buffer = (self.buffer.wrapping_add(self.pad) ^ combined).rotate_left(ROT);
}
#[inline]
#[cfg(feature = "specialize")]
fn short_finish(&self) -> u64 {
self.buffer.wrapping_add(self.pad)
}
}
/// Provides [Hasher] methods to hash all of the primitive types.
///
/// [Hasher]: core::hash::Hasher
impl Hasher for AHasher {
#[inline]
fn write_u8(&mut self, i: u8) {
self.update(i as u64);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.update(i as u64);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.update(i as u64);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.update(i as u64);
}
#[inline]
fn write_u128(&mut self, i: u128) {
self.large_update(i);
}
#[inline]
#[cfg(any(
target_pointer_width = "64",
target_pointer_width = "32",
target_pointer_width = "16"
))]
fn write_usize(&mut self, i: usize) {
self.write_u64(i as u64);
}
#[inline]
#[cfg(target_pointer_width = "128")]
fn write_usize(&mut self, i: usize) {
self.write_u128(i as u128);
}
#[inline]
#[allow(clippy::collapsible_if)]
fn write(&mut self, input: &[u8]) {
let mut data = input;
let length = data.len() as u64;
//Needs to be an add rather than an xor because otherwise it could be canceled with carefully formed input.
self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE);
//A 'binary search' on sizes reduces the number of comparisons.
if data.len() > 8 {
if data.len() > 16 {
let tail = data.read_last_u128();
self.large_update(tail);
while data.len() > 16 {
let (block, rest) = data.read_u128();
self.large_update(block);
data = rest;
}
} else {
self.large_update([data.read_u64().0, data.read_last_u64()].convert());
}
} else {
let value = read_small(data);
self.large_update(value.convert());
}
}
#[inline]
fn finish(&self) -> u64 {
let rot = (self.buffer & 63) as u32;
folded_multiply(self.buffer, self.pad).rotate_left(rot)
}
}
#[cfg(feature = "specialize")]
pub(crate) struct AHasherU64 {
pub(crate) buffer: u64,
pub(crate) pad: u64,
}
/// A specialized hasher for only primitives under 64 bits.
#[cfg(feature = "specialize")]
impl Hasher for AHasherU64 {
#[inline]
fn finish(&self) -> u64 {
let rot = (self.pad & 63) as u32;
self.buffer.rotate_left(rot)
}
#[inline]
fn write(&mut self, _bytes: &[u8]) {
unreachable!("Specialized hasher was called with a different type of object")
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.write_u64(i as u64);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.write_u64(i as u64);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.write_u64(i as u64);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.buffer = folded_multiply(i ^ self.buffer, MULTIPLE);
}
#[inline]
fn write_u128(&mut self, _i: u128) {
unreachable!("Specialized hasher was called with a different type of object")
}
#[inline]
fn write_usize(&mut self, _i: usize) {
unreachable!("Specialized hasher was called with a different type of object")
}
}
#[cfg(feature = "specialize")]
pub(crate) struct AHasherFixed(pub AHasher);
/// A specialized hasher for fixed size primitives larger than 64 bits.
#[cfg(feature = "specialize")]
impl Hasher for AHasherFixed {
#[inline]
fn finish(&self) -> u64 {
self.0.short_finish()
}
#[inline]
fn write(&mut self, bytes: &[u8]) {
self.0.write(bytes)
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.write_u64(i as u64);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.write_u64(i as u64);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.write_u64(i as u64);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.0.write_u64(i);
}
#[inline]
fn write_u128(&mut self, i: u128) {
self.0.write_u128(i);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.0.write_usize(i);
}
}
#[cfg(feature = "specialize")]
pub(crate) struct AHasherStr(pub AHasher);
/// A specialized hasher for a single string
/// Note that the other types don't panic because the hash impl for String tacks on an unneeded call. (As does vec)
#[cfg(feature = "specialize")]
impl Hasher for AHasherStr {
#[inline]
fn finish(&self) -> u64 {
self.0.finish()
}
#[inline]
fn write(&mut self, bytes: &[u8]) {
if bytes.len() > 8 {
self.0.write(bytes)
} else {
let value = read_small(bytes);
self.0.buffer = folded_multiply(value[0] ^ self.0.buffer, value[1] ^ self.0.extra_keys[1]);
self.0.pad = self.0.pad.wrapping_add(bytes.len() as u64);
}
}
#[inline]
fn write_u8(&mut self, _i: u8) {}
#[inline]
fn write_u16(&mut self, _i: u16) {}
#[inline]
fn write_u32(&mut self, _i: u32) {}
#[inline]
fn write_u64(&mut self, _i: u64) {}
#[inline]
fn write_u128(&mut self, _i: u128) {}
#[inline]
fn write_usize(&mut self, _i: usize) {}
}
#[cfg(test)]
mod tests {
use crate::convert::Convert;
use crate::fallback_hash::*;
#[test]
fn test_hash() {
let mut hasher = AHasher::new_with_keys(0, 0);
let value: u64 = 1 << 32;
hasher.update(value);
let result = hasher.buffer;
let mut hasher = AHasher::new_with_keys(0, 0);
let value2: u64 = 1;
hasher.update(value2);
let result2 = hasher.buffer;
let result: [u8; 8] = result.convert();
let result2: [u8; 8] = result2.convert();
assert_ne!(hex::encode(result), hex::encode(result2));
}
#[test]
fn test_conversion() {
let input: &[u8] = "dddddddd".as_bytes();
let bytes: u64 = as_array!(input, 8).convert();
assert_eq!(bytes, 0x6464646464646464);
}
}