1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
use std::io;
use std::io::{Seek, Write};
use std::path::Path;
use std::u32;
#[cfg(feature = "gif")]
use crate::codecs::gif;
#[cfg(feature = "png")]
use crate::codecs::png;
#[cfg(feature = "pnm")]
use crate::codecs::pnm;
use crate::buffer_::{
ConvertBuffer, Gray16Image, GrayAlpha16Image, GrayAlphaImage, GrayImage, ImageBuffer,
Rgb16Image, RgbImage, Rgba16Image, RgbaImage,
};
use crate::color::{self, IntoColor};
use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
// FIXME: These imports exist because we don't support all of our own color types.
use crate::error::{ImageFormatHint, UnsupportedError, UnsupportedErrorKind};
use crate::flat::FlatSamples;
use crate::image::{
GenericImage, GenericImageView, ImageDecoder, ImageEncoder, ImageFormat, ImageOutputFormat,
};
use crate::imageops;
use crate::io::free_functions;
use crate::math::resize_dimensions;
use crate::traits::Pixel;
use crate::{image, Luma, LumaA};
use crate::{Rgb32FImage, Rgba32FImage};
/// A Dynamic Image
///
/// This represents a _matrix_ of _pixels_ which are _convertible_ from and to an _RGBA_
/// representation. More variants that adhere to these principles may get added in the future, in
/// particular to cover other combinations typically used.
///
/// # Usage
///
/// This type can act as a converter between specific `ImageBuffer` instances.
///
/// ```
/// use image::{DynamicImage, GrayImage, RgbImage};
///
/// let rgb: RgbImage = RgbImage::new(10, 10);
/// let luma: GrayImage = DynamicImage::ImageRgb8(rgb).into_luma8();
/// ```
///
/// # Design
///
/// There is no goal to provide an all-encompassing type with all possible memory layouts. This
/// would hardly be feasible as a simple enum, due to the sheer number of combinations of channel
/// kinds, channel order, and bit depth. Rather, this type provides an opinionated selection with
/// normalized channel order which can store common pixel values without loss.
#[derive(Clone, Debug, PartialEq)]
#[non_exhaustive]
pub enum DynamicImage {
/// Each pixel in this image is 8-bit Luma
ImageLuma8(GrayImage),
/// Each pixel in this image is 8-bit Luma with alpha
ImageLumaA8(GrayAlphaImage),
/// Each pixel in this image is 8-bit Rgb
ImageRgb8(RgbImage),
/// Each pixel in this image is 8-bit Rgb with alpha
ImageRgba8(RgbaImage),
/// Each pixel in this image is 16-bit Luma
ImageLuma16(Gray16Image),
/// Each pixel in this image is 16-bit Luma with alpha
ImageLumaA16(GrayAlpha16Image),
/// Each pixel in this image is 16-bit Rgb
ImageRgb16(Rgb16Image),
/// Each pixel in this image is 16-bit Rgb with alpha
ImageRgba16(Rgba16Image),
/// Each pixel in this image is 32-bit float Rgb
ImageRgb32F(Rgb32FImage),
/// Each pixel in this image is 32-bit float Rgb with alpha
ImageRgba32F(Rgba32FImage),
}
macro_rules! dynamic_map(
($dynimage: expr, $image: pat => $action: expr) => ({
use DynamicImage::*;
match $dynimage {
ImageLuma8($image) => ImageLuma8($action),
ImageLumaA8($image) => ImageLumaA8($action),
ImageRgb8($image) => ImageRgb8($action),
ImageRgba8($image) => ImageRgba8($action),
ImageLuma16($image) => ImageLuma16($action),
ImageLumaA16($image) => ImageLumaA16($action),
ImageRgb16($image) => ImageRgb16($action),
ImageRgba16($image) => ImageRgba16($action),
ImageRgb32F($image) => ImageRgb32F($action),
ImageRgba32F($image) => ImageRgba32F($action),
}
});
($dynimage: expr, |$image: pat| $action: expr) => (
match $dynimage {
DynamicImage::ImageLuma8($image) => $action,
DynamicImage::ImageLumaA8($image) => $action,
DynamicImage::ImageRgb8($image) => $action,
DynamicImage::ImageRgba8($image) => $action,
DynamicImage::ImageLuma16($image) => $action,
DynamicImage::ImageLumaA16($image) => $action,
DynamicImage::ImageRgb16($image) => $action,
DynamicImage::ImageRgba16($image) => $action,
DynamicImage::ImageRgb32F($image) => $action,
DynamicImage::ImageRgba32F($image) => $action,
}
);
);
impl DynamicImage {
/// Creates a dynamic image backed by a buffer of gray pixels.
pub fn new_luma8(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageLuma8(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of gray
/// pixels with transparency.
pub fn new_luma_a8(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageLumaA8(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of RGB pixels.
pub fn new_rgb8(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageRgb8(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of RGBA pixels.
pub fn new_rgba8(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageRgba8(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of gray pixels.
pub fn new_luma16(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageLuma16(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of gray
/// pixels with transparency.
pub fn new_luma_a16(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageLumaA16(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of RGB pixels.
pub fn new_rgb16(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageRgb16(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of RGBA pixels.
pub fn new_rgba16(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageRgba16(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of RGB pixels.
pub fn new_rgb32f(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageRgb32F(ImageBuffer::new(w, h))
}
/// Creates a dynamic image backed by a buffer of RGBA pixels.
pub fn new_rgba32f(w: u32, h: u32) -> DynamicImage {
DynamicImage::ImageRgba32F(ImageBuffer::new(w, h))
}
/// Decodes an encoded image into a dynamic image.
pub fn from_decoder<'a>(decoder: impl ImageDecoder<'a>) -> ImageResult<Self> {
decoder_to_image(decoder)
}
/// Returns a copy of this image as an RGB image.
pub fn to_rgb8(&self) -> RgbImage {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as an RGB image.
pub fn to_rgb16(&self) -> Rgb16Image {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as an RGB image.
pub fn to_rgb32f(&self) -> Rgb32FImage {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as an RGBA image.
pub fn to_rgba8(&self) -> RgbaImage {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as an RGBA image.
pub fn to_rgba16(&self) -> Rgba16Image {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as an RGBA image.
pub fn to_rgba32f(&self) -> Rgba32FImage {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as a Luma image.
pub fn to_luma8(&self) -> GrayImage {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as a Luma image.
pub fn to_luma16(&self) -> Gray16Image {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as a Luma image.
pub fn to_luma32f(&self) -> ImageBuffer<Luma<f32>, Vec<f32>> {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as a LumaA image.
pub fn to_luma_alpha8(&self) -> GrayAlphaImage {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as a LumaA image.
pub fn to_luma_alpha16(&self) -> GrayAlpha16Image {
dynamic_map!(*self, |ref p| p.convert())
}
/// Returns a copy of this image as a LumaA image.
pub fn to_luma_alpha32f(&self) -> ImageBuffer<LumaA<f32>, Vec<f32>> {
dynamic_map!(*self, |ref p| p.convert())
}
/// Consume the image and returns a RGB image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_rgb8(self) -> RgbImage {
match self {
DynamicImage::ImageRgb8(x) => x,
x => x.to_rgb8(),
}
}
/// Consume the image and returns a RGB image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_rgb16(self) -> Rgb16Image {
match self {
DynamicImage::ImageRgb16(x) => x,
x => x.to_rgb16(),
}
}
/// Consume the image and returns a RGB image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_rgb32f(self) -> Rgb32FImage {
match self {
DynamicImage::ImageRgb32F(x) => x,
x => x.to_rgb32f(),
}
}
/// Consume the image and returns a RGBA image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_rgba8(self) -> RgbaImage {
match self {
DynamicImage::ImageRgba8(x) => x,
x => x.to_rgba8(),
}
}
/// Consume the image and returns a RGBA image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_rgba16(self) -> Rgba16Image {
match self {
DynamicImage::ImageRgba16(x) => x,
x => x.to_rgba16(),
}
}
/// Consume the image and returns a RGBA image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_rgba32f(self) -> Rgba32FImage {
match self {
DynamicImage::ImageRgba32F(x) => x,
x => x.to_rgba32f(),
}
}
/// Consume the image and returns a Luma image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_luma8(self) -> GrayImage {
match self {
DynamicImage::ImageLuma8(x) => x,
x => x.to_luma8(),
}
}
/// Consume the image and returns a Luma image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_luma16(self) -> Gray16Image {
match self {
DynamicImage::ImageLuma16(x) => x,
x => x.to_luma16(),
}
}
/// Consume the image and returns a LumaA image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_luma_alpha8(self) -> GrayAlphaImage {
match self {
DynamicImage::ImageLumaA8(x) => x,
x => x.to_luma_alpha8(),
}
}
/// Consume the image and returns a LumaA image.
///
/// If the image was already the correct format, it is returned as is.
/// Otherwise, a copy is created.
pub fn into_luma_alpha16(self) -> GrayAlpha16Image {
match self {
DynamicImage::ImageLumaA16(x) => x,
x => x.to_luma_alpha16(),
}
}
/// Return a cut-out of this image delimited by the bounding rectangle.
///
/// Note: this method does *not* modify the object,
/// and its signature will be replaced with `crop_imm()`'s in the 0.24 release
pub fn crop(&mut self, x: u32, y: u32, width: u32, height: u32) -> DynamicImage {
dynamic_map!(*self, ref mut p => imageops::crop(p, x, y, width, height).to_image())
}
/// Return a cut-out of this image delimited by the bounding rectangle.
pub fn crop_imm(&self, x: u32, y: u32, width: u32, height: u32) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::crop_imm(p, x, y, width, height).to_image())
}
/// Return a reference to an 8bit RGB image
pub fn as_rgb8(&self) -> Option<&RgbImage> {
match *self {
DynamicImage::ImageRgb8(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 8bit RGB image
pub fn as_mut_rgb8(&mut self) -> Option<&mut RgbImage> {
match *self {
DynamicImage::ImageRgb8(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 8bit RGBA image
pub fn as_rgba8(&self) -> Option<&RgbaImage> {
match *self {
DynamicImage::ImageRgba8(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 8bit RGBA image
pub fn as_mut_rgba8(&mut self) -> Option<&mut RgbaImage> {
match *self {
DynamicImage::ImageRgba8(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 8bit Grayscale image
pub fn as_luma8(&self) -> Option<&GrayImage> {
match *self {
DynamicImage::ImageLuma8(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 8bit Grayscale image
pub fn as_mut_luma8(&mut self) -> Option<&mut GrayImage> {
match *self {
DynamicImage::ImageLuma8(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 8bit Grayscale image with an alpha channel
pub fn as_luma_alpha8(&self) -> Option<&GrayAlphaImage> {
match *self {
DynamicImage::ImageLumaA8(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 8bit Grayscale image with an alpha channel
pub fn as_mut_luma_alpha8(&mut self) -> Option<&mut GrayAlphaImage> {
match *self {
DynamicImage::ImageLumaA8(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 16bit RGB image
pub fn as_rgb16(&self) -> Option<&Rgb16Image> {
match *self {
DynamicImage::ImageRgb16(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 16bit RGB image
pub fn as_mut_rgb16(&mut self) -> Option<&mut Rgb16Image> {
match *self {
DynamicImage::ImageRgb16(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 16bit RGBA image
pub fn as_rgba16(&self) -> Option<&Rgba16Image> {
match *self {
DynamicImage::ImageRgba16(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 16bit RGBA image
pub fn as_mut_rgba16(&mut self) -> Option<&mut Rgba16Image> {
match *self {
DynamicImage::ImageRgba16(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 32bit RGB image
pub fn as_rgb32f(&self) -> Option<&Rgb32FImage> {
match *self {
DynamicImage::ImageRgb32F(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 32bit RGB image
pub fn as_mut_rgb32f(&mut self) -> Option<&mut Rgb32FImage> {
match *self {
DynamicImage::ImageRgb32F(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 32bit RGBA image
pub fn as_rgba32f(&self) -> Option<&Rgba32FImage> {
match *self {
DynamicImage::ImageRgba32F(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 16bit RGBA image
pub fn as_mut_rgba32f(&mut self) -> Option<&mut Rgba32FImage> {
match *self {
DynamicImage::ImageRgba32F(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 16bit Grayscale image
pub fn as_luma16(&self) -> Option<&Gray16Image> {
match *self {
DynamicImage::ImageLuma16(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 16bit Grayscale image
pub fn as_mut_luma16(&mut self) -> Option<&mut Gray16Image> {
match *self {
DynamicImage::ImageLuma16(ref mut p) => Some(p),
_ => None,
}
}
/// Return a reference to an 16bit Grayscale image with an alpha channel
pub fn as_luma_alpha16(&self) -> Option<&GrayAlpha16Image> {
match *self {
DynamicImage::ImageLumaA16(ref p) => Some(p),
_ => None,
}
}
/// Return a mutable reference to an 16bit Grayscale image with an alpha channel
pub fn as_mut_luma_alpha16(&mut self) -> Option<&mut GrayAlpha16Image> {
match *self {
DynamicImage::ImageLumaA16(ref mut p) => Some(p),
_ => None,
}
}
/// Return a view on the raw sample buffer for 8 bit per channel images.
pub fn as_flat_samples_u8(&self) -> Option<FlatSamples<&[u8]>> {
match *self {
DynamicImage::ImageLuma8(ref p) => Some(p.as_flat_samples()),
DynamicImage::ImageLumaA8(ref p) => Some(p.as_flat_samples()),
DynamicImage::ImageRgb8(ref p) => Some(p.as_flat_samples()),
DynamicImage::ImageRgba8(ref p) => Some(p.as_flat_samples()),
_ => None,
}
}
/// Return a view on the raw sample buffer for 16 bit per channel images.
pub fn as_flat_samples_u16(&self) -> Option<FlatSamples<&[u16]>> {
match *self {
DynamicImage::ImageLuma16(ref p) => Some(p.as_flat_samples()),
DynamicImage::ImageLumaA16(ref p) => Some(p.as_flat_samples()),
DynamicImage::ImageRgb16(ref p) => Some(p.as_flat_samples()),
DynamicImage::ImageRgba16(ref p) => Some(p.as_flat_samples()),
_ => None,
}
}
/// Return a view on the raw sample buffer for 32bit per channel images.
pub fn as_flat_samples_f32(&self) -> Option<FlatSamples<&[f32]>> {
match *self {
DynamicImage::ImageRgb32F(ref p) => Some(p.as_flat_samples()),
DynamicImage::ImageRgba32F(ref p) => Some(p.as_flat_samples()),
_ => None,
}
}
/// Return this image's pixels as a native endian byte slice.
pub fn as_bytes(&self) -> &[u8] {
// we can do this because every variant contains an `ImageBuffer<_, Vec<_>>`
dynamic_map!(*self, |ref image_buffer| bytemuck::cast_slice(
image_buffer.as_raw().as_ref()
))
}
// TODO: choose a name under which to expose?
fn inner_bytes(&self) -> &[u8] {
// we can do this because every variant contains an `ImageBuffer<_, Vec<_>>`
dynamic_map!(*self, |ref image_buffer| bytemuck::cast_slice(
image_buffer.inner_pixels()
))
}
/// Return this image's pixels as a byte vector. If the `ImageBuffer`
/// container is `Vec<u8>`, this operation is free. Otherwise, a copy
/// is returned.
pub fn into_bytes(self) -> Vec<u8> {
// we can do this because every variant contains an `ImageBuffer<_, Vec<_>>`
dynamic_map!(self, |image_buffer| {
match bytemuck::allocation::try_cast_vec(image_buffer.into_raw()) {
Ok(vec) => vec,
Err((_, vec)) => {
// Fallback: vector requires an exact alignment and size match
// Reuse of the allocation as done in the Ok branch only works if the
// underlying container is exactly Vec<u8> (or compatible but that's the only
// alternative at the time of writing).
// In all other cases we must allocate a new vector with the 'same' contents.
bytemuck::cast_slice(&vec).to_owned()
}
}
})
}
/// Return a copy of this image's pixels as a byte vector.
/// Deprecated, because it does nothing but hide an expensive clone operation.
#[deprecated(
since = "0.24.0",
note = "use `image.into_bytes()` or `image.as_bytes().to_vec()` instead"
)]
pub fn to_bytes(&self) -> Vec<u8> {
self.as_bytes().to_vec()
}
/// Return this image's color type.
pub fn color(&self) -> color::ColorType {
match *self {
DynamicImage::ImageLuma8(_) => color::ColorType::L8,
DynamicImage::ImageLumaA8(_) => color::ColorType::La8,
DynamicImage::ImageRgb8(_) => color::ColorType::Rgb8,
DynamicImage::ImageRgba8(_) => color::ColorType::Rgba8,
DynamicImage::ImageLuma16(_) => color::ColorType::L16,
DynamicImage::ImageLumaA16(_) => color::ColorType::La16,
DynamicImage::ImageRgb16(_) => color::ColorType::Rgb16,
DynamicImage::ImageRgba16(_) => color::ColorType::Rgba16,
DynamicImage::ImageRgb32F(_) => color::ColorType::Rgb32F,
DynamicImage::ImageRgba32F(_) => color::ColorType::Rgba32F,
}
}
/// Returns the width of the underlying image
pub fn width(&self) -> u32 {
dynamic_map!(*self, |ref p| { p.width() })
}
/// Returns the height of the underlying image
pub fn height(&self) -> u32 {
dynamic_map!(*self, |ref p| { p.height() })
}
/// Return a grayscale version of this image.
/// Returns `Luma` images in most cases. However, for `f32` images,
/// this will return a grayscale `Rgb/Rgba` image instead.
pub fn grayscale(&self) -> DynamicImage {
match *self {
DynamicImage::ImageLuma8(ref p) => DynamicImage::ImageLuma8(p.clone()),
DynamicImage::ImageLumaA8(ref p) => {
DynamicImage::ImageLumaA8(imageops::grayscale_alpha(p))
}
DynamicImage::ImageRgb8(ref p) => DynamicImage::ImageLuma8(imageops::grayscale(p)),
DynamicImage::ImageRgba8(ref p) => {
DynamicImage::ImageLumaA8(imageops::grayscale_alpha(p))
}
DynamicImage::ImageLuma16(ref p) => DynamicImage::ImageLuma16(p.clone()),
DynamicImage::ImageLumaA16(ref p) => {
DynamicImage::ImageLumaA16(imageops::grayscale_alpha(p))
}
DynamicImage::ImageRgb16(ref p) => DynamicImage::ImageLuma16(imageops::grayscale(p)),
DynamicImage::ImageRgba16(ref p) => {
DynamicImage::ImageLumaA16(imageops::grayscale_alpha(p))
}
DynamicImage::ImageRgb32F(ref p) => {
DynamicImage::ImageRgb32F(imageops::grayscale_with_type(p))
}
DynamicImage::ImageRgba32F(ref p) => {
DynamicImage::ImageRgba32F(imageops::grayscale_with_type_alpha(p))
}
}
}
/// Invert the colors of this image.
/// This method operates inplace.
pub fn invert(&mut self) {
dynamic_map!(*self, |ref mut p| imageops::invert(p))
}
/// Resize this image using the specified filter algorithm.
/// Returns a new image. The image's aspect ratio is preserved.
/// The image is scaled to the maximum possible size that fits
/// within the bounds specified by `nwidth` and `nheight`.
pub fn resize(&self, nwidth: u32, nheight: u32, filter: imageops::FilterType) -> DynamicImage {
if (nwidth, nheight) == self.dimensions() {
return self.clone();
}
let (width2, height2) =
resize_dimensions(self.width(), self.height(), nwidth, nheight, false);
self.resize_exact(width2, height2, filter)
}
/// Resize this image using the specified filter algorithm.
/// Returns a new image. Does not preserve aspect ratio.
/// `nwidth` and `nheight` are the new image's dimensions
pub fn resize_exact(
&self,
nwidth: u32,
nheight: u32,
filter: imageops::FilterType,
) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::resize(p, nwidth, nheight, filter))
}
/// Scale this image down to fit within a specific size.
/// Returns a new image. The image's aspect ratio is preserved.
/// The image is scaled to the maximum possible size that fits
/// within the bounds specified by `nwidth` and `nheight`.
///
/// This method uses a fast integer algorithm where each source
/// pixel contributes to exactly one target pixel.
/// May give aliasing artifacts if new size is close to old size.
pub fn thumbnail(&self, nwidth: u32, nheight: u32) -> DynamicImage {
let (width2, height2) =
resize_dimensions(self.width(), self.height(), nwidth, nheight, false);
self.thumbnail_exact(width2, height2)
}
/// Scale this image down to a specific size.
/// Returns a new image. Does not preserve aspect ratio.
/// `nwidth` and `nheight` are the new image's dimensions.
/// This method uses a fast integer algorithm where each source
/// pixel contributes to exactly one target pixel.
/// May give aliasing artifacts if new size is close to old size.
pub fn thumbnail_exact(&self, nwidth: u32, nheight: u32) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::thumbnail(p, nwidth, nheight))
}
/// Resize this image using the specified filter algorithm.
/// Returns a new image. The image's aspect ratio is preserved.
/// The image is scaled to the maximum possible size that fits
/// within the larger (relative to aspect ratio) of the bounds
/// specified by `nwidth` and `nheight`, then cropped to
/// fit within the other bound.
pub fn resize_to_fill(
&self,
nwidth: u32,
nheight: u32,
filter: imageops::FilterType,
) -> DynamicImage {
let (width2, height2) =
resize_dimensions(self.width(), self.height(), nwidth, nheight, true);
let mut intermediate = self.resize_exact(width2, height2, filter);
let (iwidth, iheight) = intermediate.dimensions();
let ratio = u64::from(iwidth) * u64::from(nheight);
let nratio = u64::from(nwidth) * u64::from(iheight);
if nratio > ratio {
intermediate.crop(0, (iheight - nheight) / 2, nwidth, nheight)
} else {
intermediate.crop((iwidth - nwidth) / 2, 0, nwidth, nheight)
}
}
/// Performs a Gaussian blur on this image.
/// `sigma` is a measure of how much to blur by.
pub fn blur(&self, sigma: f32) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::blur(p, sigma))
}
/// Performs an unsharpen mask on this image.
/// `sigma` is the amount to blur the image by.
/// `threshold` is a control of how much to sharpen.
///
/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
pub fn unsharpen(&self, sigma: f32, threshold: i32) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::unsharpen(p, sigma, threshold))
}
/// Filters this image with the specified 3x3 kernel.
pub fn filter3x3(&self, kernel: &[f32]) -> DynamicImage {
if kernel.len() != 9 {
panic!("filter must be 3 x 3")
}
dynamic_map!(*self, ref p => imageops::filter3x3(p, kernel))
}
/// Adjust the contrast of this image.
/// `contrast` is the amount to adjust the contrast by.
/// Negative values decrease the contrast and positive values increase the contrast.
pub fn adjust_contrast(&self, c: f32) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::contrast(p, c))
}
/// Brighten the pixels of this image.
/// `value` is the amount to brighten each pixel by.
/// Negative values decrease the brightness and positive values increase it.
pub fn brighten(&self, value: i32) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::brighten(p, value))
}
/// Hue rotate the supplied image.
/// `value` is the degrees to rotate each pixel by.
/// 0 and 360 do nothing, the rest rotates by the given degree value.
/// just like the css webkit filter hue-rotate(180)
pub fn huerotate(&self, value: i32) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::huerotate(p, value))
}
/// Flip this image vertically
pub fn flipv(&self) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::flip_vertical(p))
}
/// Flip this image horizontally
pub fn fliph(&self) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::flip_horizontal(p))
}
/// Rotate this image 90 degrees clockwise.
pub fn rotate90(&self) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::rotate90(p))
}
/// Rotate this image 180 degrees clockwise.
pub fn rotate180(&self) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::rotate180(p))
}
/// Rotate this image 270 degrees clockwise.
pub fn rotate270(&self) -> DynamicImage {
dynamic_map!(*self, ref p => imageops::rotate270(p))
}
/// Encode this image and write it to ```w```.
///
/// Assumes the writer is buffered. In most cases,
/// you should wrap your writer in a `BufWriter` for best performance.
pub fn write_to<W: Write + Seek, F: Into<ImageOutputFormat>>(
&self,
w: &mut W,
format: F,
) -> ImageResult<()> {
#[allow(unused_variables)]
// When no features are supported
let w = w;
#[allow(unused_variables, unused_mut)]
let mut bytes = self.inner_bytes();
#[allow(unused_variables)]
let (width, height) = self.dimensions();
#[allow(unused_variables, unused_mut)]
let mut color = self.color();
let format = format.into();
// TODO do not repeat this match statement across the crate
#[allow(deprecated)]
match format {
#[cfg(feature = "png")]
image::ImageOutputFormat::Png => {
let p = png::PngEncoder::new(w);
p.write_image(bytes, width, height, color)?;
Ok(())
}
#[cfg(feature = "pnm")]
image::ImageOutputFormat::Pnm(subtype) => {
let p = pnm::PnmEncoder::new(w).with_subtype(subtype);
p.write_image(bytes, width, height, color)?;
Ok(())
}
#[cfg(feature = "gif")]
image::ImageOutputFormat::Gif => {
let mut g = gif::GifEncoder::new(w);
g.encode_frame(crate::animation::Frame::new(self.to_rgba8()))?;
Ok(())
}
format => write_buffer_with_format(w, bytes, width, height, color, format),
}
}
/// Saves the buffer to a file at the path specified.
///
/// The image format is derived from the file extension.
pub fn save<Q>(&self, path: Q) -> ImageResult<()>
where
Q: AsRef<Path>,
{
dynamic_map!(*self, |ref p| p.save(path))
}
/// Saves the buffer to a file at the specified path in
/// the specified format.
///
/// See [`save_buffer_with_format`](fn.save_buffer_with_format.html) for
/// supported types.
pub fn save_with_format<Q>(&self, path: Q, format: ImageFormat) -> ImageResult<()>
where
Q: AsRef<Path>,
{
dynamic_map!(*self, |ref p| p.save_with_format(path, format))
}
}
impl From<GrayImage> for DynamicImage {
fn from(image: GrayImage) -> Self {
DynamicImage::ImageLuma8(image)
}
}
impl From<GrayAlphaImage> for DynamicImage {
fn from(image: GrayAlphaImage) -> Self {
DynamicImage::ImageLumaA8(image)
}
}
impl From<RgbImage> for DynamicImage {
fn from(image: RgbImage) -> Self {
DynamicImage::ImageRgb8(image)
}
}
impl From<RgbaImage> for DynamicImage {
fn from(image: RgbaImage) -> Self {
DynamicImage::ImageRgba8(image)
}
}
impl From<Gray16Image> for DynamicImage {
fn from(image: Gray16Image) -> Self {
DynamicImage::ImageLuma16(image)
}
}
impl From<GrayAlpha16Image> for DynamicImage {
fn from(image: GrayAlpha16Image) -> Self {
DynamicImage::ImageLumaA16(image)
}
}
impl From<Rgb16Image> for DynamicImage {
fn from(image: Rgb16Image) -> Self {
DynamicImage::ImageRgb16(image)
}
}
impl From<Rgba16Image> for DynamicImage {
fn from(image: Rgba16Image) -> Self {
DynamicImage::ImageRgba16(image)
}
}
impl From<Rgb32FImage> for DynamicImage {
fn from(image: Rgb32FImage) -> Self {
DynamicImage::ImageRgb32F(image)
}
}
impl From<Rgba32FImage> for DynamicImage {
fn from(image: Rgba32FImage) -> Self {
DynamicImage::ImageRgba32F(image)
}
}
impl From<ImageBuffer<Luma<f32>, Vec<f32>>> for DynamicImage {
fn from(image: ImageBuffer<Luma<f32>, Vec<f32>>) -> Self {
DynamicImage::ImageRgb32F(image.convert())
}
}
impl From<ImageBuffer<LumaA<f32>, Vec<f32>>> for DynamicImage {
fn from(image: ImageBuffer<LumaA<f32>, Vec<f32>>) -> Self {
DynamicImage::ImageRgba32F(image.convert())
}
}
#[allow(deprecated)]
impl GenericImageView for DynamicImage {
type Pixel = color::Rgba<u8>; // TODO use f32 as default for best precision and unbounded color?
fn dimensions(&self) -> (u32, u32) {
dynamic_map!(*self, |ref p| p.dimensions())
}
fn bounds(&self) -> (u32, u32, u32, u32) {
dynamic_map!(*self, |ref p| p.bounds())
}
fn get_pixel(&self, x: u32, y: u32) -> color::Rgba<u8> {
dynamic_map!(*self, |ref p| p.get_pixel(x, y).to_rgba().into_color())
}
}
#[allow(deprecated)]
impl GenericImage for DynamicImage {
fn put_pixel(&mut self, x: u32, y: u32, pixel: color::Rgba<u8>) {
match *self {
DynamicImage::ImageLuma8(ref mut p) => p.put_pixel(x, y, pixel.to_luma()),
DynamicImage::ImageLumaA8(ref mut p) => p.put_pixel(x, y, pixel.to_luma_alpha()),
DynamicImage::ImageRgb8(ref mut p) => p.put_pixel(x, y, pixel.to_rgb()),
DynamicImage::ImageRgba8(ref mut p) => p.put_pixel(x, y, pixel),
DynamicImage::ImageLuma16(ref mut p) => p.put_pixel(x, y, pixel.to_luma().into_color()),
DynamicImage::ImageLumaA16(ref mut p) => {
p.put_pixel(x, y, pixel.to_luma_alpha().into_color())
}
DynamicImage::ImageRgb16(ref mut p) => p.put_pixel(x, y, pixel.to_rgb().into_color()),
DynamicImage::ImageRgba16(ref mut p) => p.put_pixel(x, y, pixel.into_color()),
DynamicImage::ImageRgb32F(ref mut p) => p.put_pixel(x, y, pixel.to_rgb().into_color()),
DynamicImage::ImageRgba32F(ref mut p) => p.put_pixel(x, y, pixel.into_color()),
}
}
fn blend_pixel(&mut self, x: u32, y: u32, pixel: color::Rgba<u8>) {
match *self {
DynamicImage::ImageLuma8(ref mut p) => p.blend_pixel(x, y, pixel.to_luma()),
DynamicImage::ImageLumaA8(ref mut p) => p.blend_pixel(x, y, pixel.to_luma_alpha()),
DynamicImage::ImageRgb8(ref mut p) => p.blend_pixel(x, y, pixel.to_rgb()),
DynamicImage::ImageRgba8(ref mut p) => p.blend_pixel(x, y, pixel),
DynamicImage::ImageLuma16(ref mut p) => {
p.blend_pixel(x, y, pixel.to_luma().into_color())
}
DynamicImage::ImageLumaA16(ref mut p) => {
p.blend_pixel(x, y, pixel.to_luma_alpha().into_color())
}
DynamicImage::ImageRgb16(ref mut p) => p.blend_pixel(x, y, pixel.to_rgb().into_color()),
DynamicImage::ImageRgba16(ref mut p) => p.blend_pixel(x, y, pixel.into_color()),
DynamicImage::ImageRgb32F(ref mut p) => {
p.blend_pixel(x, y, pixel.to_rgb().into_color())
}
DynamicImage::ImageRgba32F(ref mut p) => p.blend_pixel(x, y, pixel.into_color()),
}
}
/// Do not use is function: It is unimplemented!
fn get_pixel_mut(&mut self, _: u32, _: u32) -> &mut color::Rgba<u8> {
unimplemented!()
}
}
impl Default for DynamicImage {
fn default() -> Self {
Self::ImageRgba8(Default::default())
}
}
/// Decodes an image and stores it into a dynamic image
fn decoder_to_image<'a, I: ImageDecoder<'a>>(decoder: I) -> ImageResult<DynamicImage> {
let (w, h) = decoder.dimensions();
let color_type = decoder.color_type();
let image = match color_type {
color::ColorType::Rgb8 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb8)
}
color::ColorType::Rgba8 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba8)
}
color::ColorType::L8 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLuma8)
}
color::ColorType::La8 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLumaA8)
}
color::ColorType::Rgb16 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb16)
}
color::ColorType::Rgba16 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba16)
}
color::ColorType::Rgb32F => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb32F)
}
color::ColorType::Rgba32F => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba32F)
}
color::ColorType::L16 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLuma16)
}
color::ColorType::La16 => {
let buf = image::decoder_to_vec(decoder)?;
ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLumaA16)
}
};
match image {
Some(image) => Ok(image),
None => Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
))),
}
}
/// Open the image located at the path specified.
/// The image's format is determined from the path's file extension.
///
/// Try [`io::Reader`] for more advanced uses, including guessing the format based on the file's
/// content before its path.
///
/// [`io::Reader`]: io/struct.Reader.html
pub fn open<P>(path: P) -> ImageResult<DynamicImage>
where
P: AsRef<Path>,
{
// thin wrapper function to strip generics before calling open_impl
free_functions::open_impl(path.as_ref())
}
/// Read a tuple containing the (width, height) of the image located at the specified path.
/// This is faster than fully loading the image and then getting its dimensions.
///
/// Try [`io::Reader`] for more advanced uses, including guessing the format based on the file's
/// content before its path or manually supplying the format.
///
/// [`io::Reader`]: io/struct.Reader.html
pub fn image_dimensions<P>(path: P) -> ImageResult<(u32, u32)>
where
P: AsRef<Path>,
{
// thin wrapper function to strip generics before calling open_impl
free_functions::image_dimensions_impl(path.as_ref())
}
/// Saves the supplied buffer to a file at the path specified.
///
/// The image format is derived from the file extension. The buffer is assumed to have
/// the correct format according to the specified color type.
///
/// This will lead to corrupted files if the buffer contains malformed data. Currently only
/// jpeg, png, ico, pnm, bmp, exr and tiff files are supported.
pub fn save_buffer<P>(
path: P,
buf: &[u8],
width: u32,
height: u32,
color: color::ColorType,
) -> ImageResult<()>
where
P: AsRef<Path>,
{
// thin wrapper function to strip generics before calling save_buffer_impl
free_functions::save_buffer_impl(path.as_ref(), buf, width, height, color)
}
/// Saves the supplied buffer to a file at the path specified
/// in the specified format.
///
/// The buffer is assumed to have the correct format according
/// to the specified color type.
/// This will lead to corrupted files if the buffer contains
/// malformed data. Currently only jpeg, png, ico, bmp, exr and
/// tiff files are supported.
pub fn save_buffer_with_format<P>(
path: P,
buf: &[u8],
width: u32,
height: u32,
color: color::ColorType,
format: ImageFormat,
) -> ImageResult<()>
where
P: AsRef<Path>,
{
// thin wrapper function to strip generics
free_functions::save_buffer_with_format_impl(path.as_ref(), buf, width, height, color, format)
}
/// Writes the supplied buffer to a writer in the specified format.
///
/// The buffer is assumed to have the correct format according
/// to the specified color type.
/// This will lead to corrupted writers if the buffer contains
/// malformed data.
///
/// See [`ImageOutputFormat`](../enum.ImageOutputFormat.html) for
/// supported types.
///
/// Assumes the writer is buffered. In most cases,
/// you should wrap your writer in a `BufWriter` for best performance.
pub fn write_buffer_with_format<W, F>(
buffered_writer: &mut W,
buf: &[u8],
width: u32,
height: u32,
color: color::ColorType,
format: F,
) -> ImageResult<()>
where
W: Write + Seek,
F: Into<ImageOutputFormat>,
{
// thin wrapper function to strip generics
free_functions::write_buffer_impl(buffered_writer, buf, width, height, color, format.into())
}
/// Create a new image from a byte slice
///
/// Makes an educated guess about the image format.
/// TGA is not supported by this function.
///
/// Try [`io::Reader`] for more advanced uses.
///
/// [`io::Reader`]: io/struct.Reader.html
pub fn load_from_memory(buffer: &[u8]) -> ImageResult<DynamicImage> {
let format = free_functions::guess_format(buffer)?;
load_from_memory_with_format(buffer, format)
}
/// Create a new image from a byte slice
///
/// This is just a simple wrapper that constructs an `std::io::Cursor` around the buffer and then
/// calls `load` with that reader.
///
/// Try [`io::Reader`] for more advanced uses.
///
/// [`load`]: fn.load.html
/// [`io::Reader`]: io/struct.Reader.html
#[inline(always)]
pub fn load_from_memory_with_format(buf: &[u8], format: ImageFormat) -> ImageResult<DynamicImage> {
let b = io::Cursor::new(buf);
free_functions::load(b, format)
}
#[cfg(test)]
mod bench {
#[cfg(feature = "benchmarks")]
use test;
#[bench]
#[cfg(feature = "benchmarks")]
fn bench_conversion(b: &mut test::Bencher) {
let a = super::DynamicImage::ImageRgb8(crate::ImageBuffer::new(1000, 1000));
b.iter(|| a.to_luma8());
b.bytes = 1000 * 1000 * 3
}
}
#[cfg(test)]
mod test {
#[test]
fn test_empty_file() {
assert!(super::load_from_memory(b"").is_err());
}
#[cfg(feature = "jpeg")]
#[test]
fn image_dimensions() {
let im_path = "./tests/images/jpg/progressive/cat.jpg";
let dims = super::image_dimensions(im_path).unwrap();
assert_eq!(dims, (320, 240));
}
#[cfg(feature = "png")]
#[test]
fn open_16bpc_png() {
let im_path = "./tests/images/png/16bpc/basn6a16.png";
let image = super::open(im_path).unwrap();
assert_eq!(image.color(), super::color::ColorType::Rgba16);
}
fn test_grayscale(mut img: super::DynamicImage, alpha_discarded: bool) {
use crate::image::{GenericImage, GenericImageView};
img.put_pixel(0, 0, crate::color::Rgba([255, 0, 0, 100]));
let expected_alpha = if alpha_discarded { 255 } else { 100 };
assert_eq!(
img.grayscale().get_pixel(0, 0),
crate::color::Rgba([54, 54, 54, expected_alpha])
);
}
fn test_grayscale_alpha_discarded(img: super::DynamicImage) {
test_grayscale(img, true);
}
fn test_grayscale_alpha_preserved(img: super::DynamicImage) {
test_grayscale(img, false);
}
#[test]
fn test_grayscale_luma8() {
test_grayscale_alpha_discarded(super::DynamicImage::new_luma8(1, 1));
}
#[test]
fn test_grayscale_luma_a8() {
test_grayscale_alpha_preserved(super::DynamicImage::new_luma_a8(1, 1));
}
#[test]
fn test_grayscale_rgb8() {
test_grayscale_alpha_discarded(super::DynamicImage::new_rgb8(1, 1));
}
#[test]
fn test_grayscale_rgba8() {
test_grayscale_alpha_preserved(super::DynamicImage::new_rgba8(1, 1));
}
#[test]
fn test_grayscale_luma16() {
test_grayscale_alpha_discarded(super::DynamicImage::new_luma16(1, 1));
}
#[test]
fn test_grayscale_luma_a16() {
test_grayscale_alpha_preserved(super::DynamicImage::new_luma_a16(1, 1));
}
#[test]
fn test_grayscale_rgb16() {
test_grayscale_alpha_discarded(super::DynamicImage::new_rgb16(1, 1));
}
#[test]
fn test_grayscale_rgba16() {
test_grayscale_alpha_preserved(super::DynamicImage::new_rgba16(1, 1));
}
#[test]
fn test_grayscale_rgb32f() {
test_grayscale_alpha_discarded(super::DynamicImage::new_rgb32f(1, 1));
}
#[test]
fn test_grayscale_rgba32f() {
test_grayscale_alpha_preserved(super::DynamicImage::new_rgba32f(1, 1));
}
#[test]
fn test_dynamic_image_default_implementation() {
// Test that structs wrapping a DynamicImage are able to auto-derive the Default trait
// ensures that DynamicImage implements Default (if it didn't, this would cause a compile error).
#[derive(Default)]
struct Foo {
_image: super::DynamicImage,
}
}
#[test]
fn test_to_vecu8() {
let _ = super::DynamicImage::new_luma8(1, 1).into_bytes();
let _ = super::DynamicImage::new_luma16(1, 1).into_bytes();
}
#[test]
fn issue_1705_can_turn_16bit_image_into_bytes() {
let pixels = vec![65535u16; 64 * 64];
let img = super::ImageBuffer::from_vec(64, 64, pixels).unwrap();
let img = super::DynamicImage::ImageLuma16(img.into());
assert!(img.as_luma16().is_some());
let bytes: Vec<u8> = img.into_bytes();
assert_eq!(bytes, vec![0xFF; 64 * 64 * 2]);
}
}