1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
use std::{
fmt, io,
pin::Pin,
task::{Context, Poll},
};
use bitflags::bitflags;
use bytes::{Buf, BytesMut};
use futures_core::{ready, Stream};
use futures_sink::Sink;
use pin_project_lite::pin_project;
use crate::{AsyncRead, AsyncWrite, Decoder, Encoder};
/// Low-water mark
const LW: usize = 1024;
/// High-water mark
const HW: usize = 8 * 1024;
bitflags! {
struct Flags: u8 {
const EOF = 0b0001;
const READABLE = 0b0010;
}
}
pin_project! {
/// A unified `Stream` and `Sink` interface to an underlying I/O object, using the `Encoder` and
/// `Decoder` traits to encode and decode frames.
///
/// Raw I/O objects work with byte sequences, but higher-level code usually wants to batch these
/// into meaningful chunks, called "frames". This method layers framing on top of an I/O object,
/// by using the `Encoder`/`Decoder` traits to handle encoding and decoding of message frames.
/// Note that the incoming and outgoing frame types may be distinct.
pub struct Framed<T, U> {
#[pin]
io: T,
codec: U,
flags: Flags,
read_buf: BytesMut,
write_buf: BytesMut,
}
}
impl<T, U> Framed<T, U>
where
T: AsyncRead + AsyncWrite,
U: Decoder,
{
/// This function returns a *single* object that is both `Stream` and `Sink`; grouping this into
/// a single object is often useful for layering things like gzip or TLS, which require both
/// read and write access to the underlying object.
pub fn new(io: T, codec: U) -> Framed<T, U> {
Framed {
io,
codec,
flags: Flags::empty(),
read_buf: BytesMut::with_capacity(HW),
write_buf: BytesMut::with_capacity(HW),
}
}
}
impl<T, U> Framed<T, U> {
/// Returns a reference to the underlying codec.
pub fn codec_ref(&self) -> &U {
&self.codec
}
/// Returns a mutable reference to the underlying codec.
pub fn codec_mut(&mut self) -> &mut U {
&mut self.codec
}
/// Returns a reference to the underlying I/O stream wrapped by `Frame`.
///
/// Note that care should be taken to not tamper with the underlying stream of data coming in as
/// it may corrupt the stream of frames otherwise being worked with.
pub fn io_ref(&self) -> &T {
&self.io
}
/// Returns a mutable reference to the underlying I/O stream.
///
/// Note that care should be taken to not tamper with the underlying stream of data coming in as
/// it may corrupt the stream of frames otherwise being worked with.
pub fn io_mut(&mut self) -> &mut T {
&mut self.io
}
/// Returns a `Pin` of a mutable reference to the underlying I/O stream.
pub fn io_pin(self: Pin<&mut Self>) -> Pin<&mut T> {
self.project().io
}
/// Check if read buffer is empty.
pub fn is_read_buf_empty(&self) -> bool {
self.read_buf.is_empty()
}
/// Check if write buffer is empty.
pub fn is_write_buf_empty(&self) -> bool {
self.write_buf.is_empty()
}
/// Check if write buffer is full.
pub fn is_write_buf_full(&self) -> bool {
self.write_buf.len() >= HW
}
/// Check if framed is able to write more data.
///
/// `Framed` object considers ready if there is free space in write buffer.
pub fn is_write_ready(&self) -> bool {
self.write_buf.len() < HW
}
/// Consume the `Frame`, returning `Frame` with different codec.
pub fn replace_codec<U2>(self, codec: U2) -> Framed<T, U2> {
Framed {
codec,
io: self.io,
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
/// Consume the `Frame`, returning `Frame` with different io.
pub fn into_map_io<F, T2>(self, f: F) -> Framed<T2, U>
where
F: Fn(T) -> T2,
{
Framed {
io: f(self.io),
codec: self.codec,
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
/// Consume the `Frame`, returning `Frame` with different codec.
pub fn into_map_codec<F, U2>(self, f: F) -> Framed<T, U2>
where
F: Fn(U) -> U2,
{
Framed {
io: self.io,
codec: f(self.codec),
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
}
impl<T, U> Framed<T, U> {
/// Serialize item and write to the inner buffer
pub fn write<I>(mut self: Pin<&mut Self>, item: I) -> Result<(), <U as Encoder<I>>::Error>
where
T: AsyncWrite,
U: Encoder<I>,
{
let this = self.as_mut().project();
let remaining = this.write_buf.capacity() - this.write_buf.len();
if remaining < LW {
this.write_buf.reserve(HW - remaining);
}
this.codec.encode(item, this.write_buf)?;
Ok(())
}
/// Try to read underlying I/O stream and decode item.
pub fn next_item(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<<U as Decoder>::Item, U::Error>>>
where
T: AsyncRead,
U: Decoder,
{
loop {
let this = self.as_mut().project();
// Repeatedly call `decode` or `decode_eof` as long as it is "readable". Readable is
// defined as not having returned `None`. If the upstream has returned EOF, and the
// decoder is no longer readable, it can be assumed that the decoder will never become
// readable again, at which point the stream is terminated.
if this.flags.contains(Flags::READABLE) {
if this.flags.contains(Flags::EOF) {
match this.codec.decode_eof(this.read_buf) {
Ok(Some(frame)) => return Poll::Ready(Some(Ok(frame))),
Ok(None) => return Poll::Ready(None),
Err(err) => return Poll::Ready(Some(Err(err))),
}
}
log::trace!("attempting to decode a frame");
match this.codec.decode(this.read_buf) {
Ok(Some(frame)) => {
log::trace!("frame decoded from buffer");
return Poll::Ready(Some(Ok(frame)));
}
Err(err) => return Poll::Ready(Some(Err(err))),
_ => (), // Need more data
}
this.flags.remove(Flags::READABLE);
}
debug_assert!(!this.flags.contains(Flags::EOF));
// Otherwise, try to read more data and try again. Make sure we've got room.
let remaining = this.read_buf.capacity() - this.read_buf.len();
if remaining < LW {
this.read_buf.reserve(HW - remaining)
}
let cnt = match tokio_util::io::poll_read_buf(this.io, cx, this.read_buf) {
Poll::Pending => return Poll::Pending,
Poll::Ready(Err(err)) => return Poll::Ready(Some(Err(err.into()))),
Poll::Ready(Ok(cnt)) => cnt,
};
if cnt == 0 {
this.flags.insert(Flags::EOF);
}
this.flags.insert(Flags::READABLE);
}
}
/// Flush write buffer to underlying I/O stream.
pub fn flush<I>(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), U::Error>>
where
T: AsyncWrite,
U: Encoder<I>,
{
let mut this = self.as_mut().project();
log::trace!("flushing framed transport");
while !this.write_buf.is_empty() {
log::trace!("writing; remaining={}", this.write_buf.len());
let n = ready!(this.io.as_mut().poll_write(cx, this.write_buf))?;
if n == 0 {
return Poll::Ready(Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write frame to transport",
)
.into()));
}
// remove written data
this.write_buf.advance(n);
}
// Try flushing the underlying IO
ready!(this.io.poll_flush(cx))?;
log::trace!("framed transport flushed");
Poll::Ready(Ok(()))
}
/// Flush write buffer and shutdown underlying I/O stream.
pub fn close<I>(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), U::Error>>
where
T: AsyncWrite,
U: Encoder<I>,
{
let mut this = self.as_mut().project();
ready!(this.io.as_mut().poll_flush(cx))?;
ready!(this.io.as_mut().poll_shutdown(cx))?;
Poll::Ready(Ok(()))
}
}
impl<T, U> Stream for Framed<T, U>
where
T: AsyncRead,
U: Decoder,
{
type Item = Result<U::Item, U::Error>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.next_item(cx)
}
}
impl<T, U, I> Sink<I> for Framed<T, U>
where
T: AsyncWrite,
U: Encoder<I>,
U::Error: From<io::Error>,
{
type Error = U::Error;
fn poll_ready(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
if self.is_write_ready() {
Poll::Ready(Ok(()))
} else {
self.flush(cx)
}
}
fn start_send(self: Pin<&mut Self>, item: I) -> Result<(), Self::Error> {
self.write(item)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.close(cx)
}
}
impl<T, U> fmt::Debug for Framed<T, U>
where
T: fmt::Debug,
U: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Framed")
.field("io", &self.io)
.field("codec", &self.codec)
.finish()
}
}
impl<T, U> Framed<T, U> {
/// This function returns a *single* object that is both `Stream` and `Sink`; grouping this into
/// a single object is often useful for layering things like gzip or TLS, which require both
/// read and write access to the underlying object.
///
/// These objects take a stream, a read buffer and a write buffer. These fields can be obtained
/// from an existing `Framed` with the `into_parts` method.
pub fn from_parts(parts: FramedParts<T, U>) -> Framed<T, U> {
Framed {
io: parts.io,
codec: parts.codec,
flags: parts.flags,
write_buf: parts.write_buf,
read_buf: parts.read_buf,
}
}
/// Consumes the `Frame`, returning its underlying I/O stream, the buffer with unprocessed data,
/// and the codec.
///
/// Note that care should be taken to not tamper with the underlying stream of data coming in as
/// it may corrupt the stream of frames otherwise being worked with.
pub fn into_parts(self) -> FramedParts<T, U> {
FramedParts {
io: self.io,
codec: self.codec,
flags: self.flags,
read_buf: self.read_buf,
write_buf: self.write_buf,
}
}
}
/// `FramedParts` contains an export of the data of a Framed transport.
///
/// It can be used to construct a new `Framed` with a different codec. It contains all current
/// buffers and the inner transport.
#[derive(Debug)]
pub struct FramedParts<T, U> {
/// The inner transport used to read bytes to and write bytes to.
pub io: T,
/// The codec object.
pub codec: U,
/// The buffer with read but unprocessed data.
pub read_buf: BytesMut,
/// A buffer with unprocessed data which are not written yet.
pub write_buf: BytesMut,
flags: Flags,
}
impl<T, U> FramedParts<T, U> {
/// Creates a new default `FramedParts`.
pub fn new(io: T, codec: U) -> FramedParts<T, U> {
FramedParts {
io,
codec,
flags: Flags::empty(),
read_buf: BytesMut::new(),
write_buf: BytesMut::new(),
}
}
/// Creates a new `FramedParts` with read buffer.
pub fn with_read_buf(io: T, codec: U, read_buf: BytesMut) -> FramedParts<T, U> {
FramedParts {
io,
codec,
read_buf,
flags: Flags::empty(),
write_buf: BytesMut::new(),
}
}
}