1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//! Payload stream

use std::{
    cell::RefCell,
    collections::VecDeque,
    pin::Pin,
    rc::{Rc, Weak},
    task::{Context, Poll, Waker},
};

use bytes::Bytes;
use futures_core::Stream;

use crate::error::PayloadError;

/// max buffer size 32k
pub(crate) const MAX_BUFFER_SIZE: usize = 32_768;

#[derive(Debug, PartialEq, Eq)]
pub enum PayloadStatus {
    Read,
    Pause,
    Dropped,
}

/// Buffered stream of bytes chunks
///
/// Payload stores chunks in a vector. First chunk can be received with `poll_next`. Payload does
/// not notify current task when new data is available.
///
/// Payload can be used as `Response` body stream.
#[derive(Debug)]
pub struct Payload {
    inner: Rc<RefCell<Inner>>,
}

impl Payload {
    /// Creates a payload stream.
    ///
    /// This method construct two objects responsible for bytes stream generation:
    /// - `PayloadSender` - *Sender* side of the stream
    /// - `Payload` - *Receiver* side of the stream
    pub fn create(eof: bool) -> (PayloadSender, Payload) {
        let shared = Rc::new(RefCell::new(Inner::new(eof)));

        (
            PayloadSender::new(Rc::downgrade(&shared)),
            Payload { inner: shared },
        )
    }

    /// Creates an empty payload.
    pub(crate) fn empty() -> Payload {
        Payload {
            inner: Rc::new(RefCell::new(Inner::new(true))),
        }
    }

    /// Length of the data in this payload
    #[cfg(test)]
    pub fn len(&self) -> usize {
        self.inner.borrow().len()
    }

    /// Is payload empty
    #[cfg(test)]
    pub fn is_empty(&self) -> bool {
        self.inner.borrow().len() == 0
    }

    /// Put unused data back to payload
    #[inline]
    pub fn unread_data(&mut self, data: Bytes) {
        self.inner.borrow_mut().unread_data(data);
    }
}

impl Stream for Payload {
    type Item = Result<Bytes, PayloadError>;

    fn poll_next(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<Bytes, PayloadError>>> {
        Pin::new(&mut *self.inner.borrow_mut()).poll_next(cx)
    }
}

/// Sender part of the payload stream
pub struct PayloadSender {
    inner: Weak<RefCell<Inner>>,
}

impl PayloadSender {
    fn new(inner: Weak<RefCell<Inner>>) -> Self {
        Self { inner }
    }

    #[inline]
    pub fn set_error(&mut self, err: PayloadError) {
        if let Some(shared) = self.inner.upgrade() {
            shared.borrow_mut().set_error(err)
        }
    }

    #[inline]
    pub fn feed_eof(&mut self) {
        if let Some(shared) = self.inner.upgrade() {
            shared.borrow_mut().feed_eof()
        }
    }

    #[inline]
    pub fn feed_data(&mut self, data: Bytes) {
        if let Some(shared) = self.inner.upgrade() {
            shared.borrow_mut().feed_data(data)
        }
    }

    #[inline]
    pub fn need_read(&self, cx: &mut Context<'_>) -> PayloadStatus {
        // we check need_read only if Payload (other side) is alive,
        // otherwise always return true (consume payload)
        if let Some(shared) = self.inner.upgrade() {
            if shared.borrow().need_read {
                PayloadStatus::Read
            } else {
                shared.borrow_mut().register_io(cx);
                PayloadStatus::Pause
            }
        } else {
            PayloadStatus::Dropped
        }
    }
}

#[derive(Debug)]
struct Inner {
    len: usize,
    eof: bool,
    err: Option<PayloadError>,
    need_read: bool,
    items: VecDeque<Bytes>,
    task: Option<Waker>,
    io_task: Option<Waker>,
}

impl Inner {
    fn new(eof: bool) -> Self {
        Inner {
            eof,
            len: 0,
            err: None,
            items: VecDeque::new(),
            need_read: true,
            task: None,
            io_task: None,
        }
    }

    /// Wake up future waiting for payload data to be available.
    fn wake(&mut self) {
        if let Some(waker) = self.task.take() {
            waker.wake();
        }
    }

    /// Wake up future feeding data to Payload.
    fn wake_io(&mut self) {
        if let Some(waker) = self.io_task.take() {
            waker.wake();
        }
    }

    /// Register future waiting data from payload.
    /// Waker would be used in `Inner::wake`
    fn register(&mut self, cx: &mut Context<'_>) {
        if self
            .task
            .as_ref()
            .map_or(true, |w| !cx.waker().will_wake(w))
        {
            self.task = Some(cx.waker().clone());
        }
    }

    // Register future feeding data to payload.
    /// Waker would be used in `Inner::wake_io`
    fn register_io(&mut self, cx: &mut Context<'_>) {
        if self
            .io_task
            .as_ref()
            .map_or(true, |w| !cx.waker().will_wake(w))
        {
            self.io_task = Some(cx.waker().clone());
        }
    }

    #[inline]
    fn set_error(&mut self, err: PayloadError) {
        self.err = Some(err);
    }

    #[inline]
    fn feed_eof(&mut self) {
        self.eof = true;
    }

    #[inline]
    fn feed_data(&mut self, data: Bytes) {
        self.len += data.len();
        self.items.push_back(data);
        self.need_read = self.len < MAX_BUFFER_SIZE;
        self.wake();
    }

    #[cfg(test)]
    fn len(&self) -> usize {
        self.len
    }

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<Bytes, PayloadError>>> {
        if let Some(data) = self.items.pop_front() {
            self.len -= data.len();
            self.need_read = self.len < MAX_BUFFER_SIZE;

            if self.need_read && !self.eof {
                self.register(cx);
            }
            self.wake_io();
            Poll::Ready(Some(Ok(data)))
        } else if let Some(err) = self.err.take() {
            Poll::Ready(Some(Err(err)))
        } else if self.eof {
            Poll::Ready(None)
        } else {
            self.need_read = true;
            self.register(cx);
            self.wake_io();
            Poll::Pending
        }
    }

    fn unread_data(&mut self, data: Bytes) {
        self.len += data.len();
        self.items.push_front(data);
    }
}

#[cfg(test)]
mod tests {
    use actix_utils::future::poll_fn;
    use static_assertions::{assert_impl_all, assert_not_impl_any};

    use super::*;

    assert_impl_all!(Payload: Unpin);
    assert_not_impl_any!(Payload: Send, Sync);

    assert_impl_all!(Inner: Unpin, Send, Sync);

    #[actix_rt::test]
    async fn test_unread_data() {
        let (_, mut payload) = Payload::create(false);

        payload.unread_data(Bytes::from("data"));
        assert!(!payload.is_empty());
        assert_eq!(payload.len(), 4);

        assert_eq!(
            Bytes::from("data"),
            poll_fn(|cx| Pin::new(&mut payload).poll_next(cx))
                .await
                .unwrap()
                .unwrap()
        );
    }
}