1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
#![cfg(feature = "extern_crate_alloc")]
//! Stuff to boost things in the `alloc` crate.
//!
//! * You must enable the `extern_crate_alloc` feature of `bytemuck` or you will
//! not be able to use this module! This is generally done by adding the
//! feature to the dependency in Cargo.toml like so:
//!
//! `bytemuck = { version = "VERSION_YOU_ARE_USING", features =
//! ["extern_crate_alloc"]}`
use super::*;
#[cfg(target_has_atomic = "ptr")]
use alloc::sync::Arc;
use alloc::{
alloc::{alloc_zeroed, Layout},
boxed::Box,
rc::Rc,
vec,
vec::Vec,
};
/// As [`try_cast_box`](try_cast_box), but unwraps for you.
#[inline]
pub fn cast_box<A: NoUninit, B: AnyBitPattern>(input: Box<A>) -> Box<B> {
try_cast_box(input).map_err(|(e, _v)| e).unwrap()
}
/// Attempts to cast the content type of a [`Box`](alloc::boxed::Box).
///
/// On failure you get back an error along with the starting `Box`.
///
/// ## Failure
///
/// * The start and end content type of the `Box` must have the exact same
/// alignment.
/// * The start and end size of the `Box` must have the exact same size.
#[inline]
pub fn try_cast_box<A: NoUninit, B: AnyBitPattern>(
input: Box<A>,
) -> Result<Box<B>, (PodCastError, Box<A>)> {
if align_of::<A>() != align_of::<B>() {
Err((PodCastError::AlignmentMismatch, input))
} else if size_of::<A>() != size_of::<B>() {
Err((PodCastError::SizeMismatch, input))
} else {
// Note(Lokathor): This is much simpler than with the Vec casting!
let ptr: *mut B = Box::into_raw(input) as *mut B;
Ok(unsafe { Box::from_raw(ptr) })
}
}
/// Allocates a `Box<T>` with all of the contents being zeroed out.
///
/// This uses the global allocator to create a zeroed allocation and _then_
/// turns it into a Box. In other words, it's 100% assured that the zeroed data
/// won't be put temporarily on the stack. You can make a box of any size
/// without fear of a stack overflow.
///
/// ## Failure
///
/// This fails if the allocation fails.
#[inline]
pub fn try_zeroed_box<T: Zeroable>() -> Result<Box<T>, ()> {
if size_of::<T>() == 0 {
// This will not allocate but simply create a dangling pointer.
let dangling = core::ptr::NonNull::dangling().as_ptr();
return Ok(unsafe { Box::from_raw(dangling) });
}
let layout = Layout::new::<T>();
let ptr = unsafe { alloc_zeroed(layout) };
if ptr.is_null() {
// we don't know what the error is because `alloc_zeroed` is a dumb API
Err(())
} else {
Ok(unsafe { Box::<T>::from_raw(ptr as *mut T) })
}
}
/// As [`try_zeroed_box`], but unwraps for you.
#[inline]
pub fn zeroed_box<T: Zeroable>() -> Box<T> {
try_zeroed_box().unwrap()
}
/// Allocates a `Vec<T>` of length and capacity exactly equal to `length` and
/// all elements zeroed.
///
/// ## Failure
///
/// This fails if the allocation fails, or if a layout cannot be calculated for
/// the allocation.
pub fn try_zeroed_vec<T: Zeroable>(length: usize) -> Result<Vec<T>, ()> {
if length == 0 {
Ok(Vec::new())
} else {
let boxed_slice = try_zeroed_slice_box(length)?;
Ok(boxed_slice.into_vec())
}
}
/// As [`try_zeroed_vec`] but unwraps for you
pub fn zeroed_vec<T: Zeroable>(length: usize) -> Vec<T> {
try_zeroed_vec(length).unwrap()
}
/// Allocates a `Box<[T]>` with all contents being zeroed out.
///
/// This uses the global allocator to create a zeroed allocation and _then_
/// turns it into a Box. In other words, it's 100% assured that the zeroed data
/// won't be put temporarily on the stack. You can make a box of any size
/// without fear of a stack overflow.
///
/// ## Failure
///
/// This fails if the allocation fails, or if a layout cannot be calculated for
/// the allocation.
#[inline]
pub fn try_zeroed_slice_box<T: Zeroable>(
length: usize,
) -> Result<Box<[T]>, ()> {
if size_of::<T>() == 0 || length == 0 {
// This will not allocate but simply create a dangling slice pointer.
let dangling = core::ptr::NonNull::dangling().as_ptr();
let dangling_slice = core::ptr::slice_from_raw_parts_mut(dangling, length);
return Ok(unsafe { Box::from_raw(dangling_slice) });
}
let layout = core::alloc::Layout::array::<T>(length).map_err(|_| ())?;
let ptr = unsafe { alloc_zeroed(layout) };
if ptr.is_null() {
// we don't know what the error is because `alloc_zeroed` is a dumb API
Err(())
} else {
let slice =
unsafe { core::slice::from_raw_parts_mut(ptr as *mut T, length) };
Ok(unsafe { Box::<[T]>::from_raw(slice) })
}
}
/// As [`try_zeroed_slice_box`](try_zeroed_slice_box), but unwraps for you.
pub fn zeroed_slice_box<T: Zeroable>(length: usize) -> Box<[T]> {
try_zeroed_slice_box(length).unwrap()
}
/// As [`try_cast_slice_box`](try_cast_slice_box), but unwraps for you.
#[inline]
pub fn cast_slice_box<A: NoUninit, B: AnyBitPattern>(
input: Box<[A]>,
) -> Box<[B]> {
try_cast_slice_box(input).map_err(|(e, _v)| e).unwrap()
}
/// Attempts to cast the content type of a `Box<[T]>`.
///
/// On failure you get back an error along with the starting `Box<[T]>`.
///
/// ## Failure
///
/// * The start and end content type of the `Box<[T]>` must have the exact same
/// alignment.
/// * The start and end content size in bytes of the `Box<[T]>` must be the
/// exact same.
#[inline]
pub fn try_cast_slice_box<A: NoUninit, B: AnyBitPattern>(
input: Box<[A]>,
) -> Result<Box<[B]>, (PodCastError, Box<[A]>)> {
if align_of::<A>() != align_of::<B>() {
Err((PodCastError::AlignmentMismatch, input))
} else if size_of::<A>() != size_of::<B>() {
if size_of::<A>() * input.len() % size_of::<B>() != 0 {
// If the size in bytes of the underlying buffer does not match an exact
// multiple of the size of B, we cannot cast between them.
Err((PodCastError::SizeMismatch, input))
} else {
// Because the size is an exact multiple, we can now change the length
// of the slice and recreate the Box
// NOTE: This is a valid operation because according to the docs of
// std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
// the block must be the same Layout that is used to dealloc the block.
// Luckily, Layout only stores two things, the alignment, and the size in
// bytes. So as long as both of those stay the same, the Layout will
// remain a valid input to dealloc.
let length = size_of::<A>() * input.len() / size_of::<B>();
let box_ptr: *mut A = Box::into_raw(input) as *mut A;
let ptr: *mut [B] =
unsafe { core::slice::from_raw_parts_mut(box_ptr as *mut B, length) };
Ok(unsafe { Box::<[B]>::from_raw(ptr) })
}
} else {
let box_ptr: *mut [A] = Box::into_raw(input);
let ptr: *mut [B] = box_ptr as *mut [B];
Ok(unsafe { Box::<[B]>::from_raw(ptr) })
}
}
/// As [`try_cast_vec`](try_cast_vec), but unwraps for you.
#[inline]
pub fn cast_vec<A: NoUninit, B: AnyBitPattern>(input: Vec<A>) -> Vec<B> {
try_cast_vec(input).map_err(|(e, _v)| e).unwrap()
}
/// Attempts to cast the content type of a [`Vec`](alloc::vec::Vec).
///
/// On failure you get back an error along with the starting `Vec`.
///
/// ## Failure
///
/// * The start and end content type of the `Vec` must have the exact same
/// alignment.
/// * The start and end content size in bytes of the `Vec` must be the exact
/// same.
/// * The start and end capacity in bytes of the `Vec` must be the exact same.
#[inline]
pub fn try_cast_vec<A: NoUninit, B: AnyBitPattern>(
input: Vec<A>,
) -> Result<Vec<B>, (PodCastError, Vec<A>)> {
if align_of::<A>() != align_of::<B>() {
Err((PodCastError::AlignmentMismatch, input))
} else if size_of::<A>() != size_of::<B>() {
if size_of::<A>() * input.len() % size_of::<B>() != 0
|| size_of::<A>() * input.capacity() % size_of::<B>() != 0
{
// If the size in bytes of the underlying buffer does not match an exact
// multiple of the size of B, we cannot cast between them.
// Note that we have to pay special attention to make sure that both
// length and capacity are valid under B, as we do not want to
// change which bytes are considered part of the initialized slice
// of the Vec
Err((PodCastError::SizeMismatch, input))
} else {
// Because the size is an exact multiple, we can now change the length and
// capacity and recreate the Vec
// NOTE: This is a valid operation because according to the docs of
// std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
// the block must be the same Layout that is used to dealloc the block.
// Luckily, Layout only stores two things, the alignment, and the size in
// bytes. So as long as both of those stay the same, the Layout will
// remain a valid input to dealloc.
// Note(Lokathor): First we record the length and capacity, which don't
// have any secret provenance metadata.
let length: usize = size_of::<A>() * input.len() / size_of::<B>();
let capacity: usize = size_of::<A>() * input.capacity() / size_of::<B>();
// Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
// ManuallyDrop, because if we used `core::mem::forget` after taking the
// pointer then that would invalidate our pointer. In nightly there's a
// "into raw parts" method, which we can switch this too eventually.
let mut manual_drop_vec = ManuallyDrop::new(input);
let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
let ptr: *mut B = vec_ptr as *mut B;
Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
}
} else {
// Note(Lokathor): First we record the length and capacity, which don't have
// any secret provenance metadata.
let length: usize = input.len();
let capacity: usize = input.capacity();
// Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
// ManuallyDrop, because if we used `core::mem::forget` after taking the
// pointer then that would invalidate our pointer. In nightly there's a
// "into raw parts" method, which we can switch this too eventually.
let mut manual_drop_vec = ManuallyDrop::new(input);
let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
let ptr: *mut B = vec_ptr as *mut B;
Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
}
}
/// This "collects" a slice of pod data into a vec of a different pod type.
///
/// Unlike with [`cast_slice`] and [`cast_slice_mut`], this will always work.
///
/// The output vec will be of a minimal size/capacity to hold the slice given.
///
/// ```rust
/// # use bytemuck::*;
/// let halfwords: [u16; 4] = [5, 6, 7, 8];
/// let vec_of_words: Vec<u32> = pod_collect_to_vec(&halfwords);
/// if cfg!(target_endian = "little") {
/// assert_eq!(&vec_of_words[..], &[0x0006_0005, 0x0008_0007][..])
/// } else {
/// assert_eq!(&vec_of_words[..], &[0x0005_0006, 0x0007_0008][..])
/// }
/// ```
pub fn pod_collect_to_vec<A: NoUninit, B: NoUninit + AnyBitPattern>(
src: &[A],
) -> Vec<B> {
let src_size = size_of_val(src);
// Note(Lokathor): dst_count is rounded up so that the dest will always be at
// least as many bytes as the src.
let dst_count = src_size / size_of::<B>()
+ if src_size % size_of::<B>() != 0 { 1 } else { 0 };
let mut dst = vec![B::zeroed(); dst_count];
let src_bytes: &[u8] = cast_slice(src);
let dst_bytes: &mut [u8] = cast_slice_mut(&mut dst[..]);
dst_bytes[..src_size].copy_from_slice(src_bytes);
dst
}
/// As [`try_cast_rc`](try_cast_rc), but unwraps for you.
#[inline]
pub fn cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
input: Rc<A>,
) -> Rc<B> {
try_cast_rc(input).map_err(|(e, _v)| e).unwrap()
}
/// Attempts to cast the content type of a [`Rc`](alloc::rc::Rc).
///
/// On failure you get back an error along with the starting `Rc`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Rc` must have the exact same
/// alignment.
/// * The start and end size of the `Rc` must have the exact same size.
#[inline]
pub fn try_cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
input: Rc<A>,
) -> Result<Rc<B>, (PodCastError, Rc<A>)> {
if align_of::<A>() != align_of::<B>() {
Err((PodCastError::AlignmentMismatch, input))
} else if size_of::<A>() != size_of::<B>() {
Err((PodCastError::SizeMismatch, input))
} else {
// Safety: Rc::from_raw requires size and alignment match, which is met.
let ptr: *const B = Rc::into_raw(input) as *const B;
Ok(unsafe { Rc::from_raw(ptr) })
}
}
/// As [`try_cast_arc`](try_cast_arc), but unwraps for you.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn cast_arc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
input: Arc<A>,
) -> Arc<B> {
try_cast_arc(input).map_err(|(e, _v)| e).unwrap()
}
/// Attempts to cast the content type of a [`Arc`](alloc::sync::Arc).
///
/// On failure you get back an error along with the starting `Arc`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Arc` must have the exact same
/// alignment.
/// * The start and end size of the `Arc` must have the exact same size.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn try_cast_arc<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
input: Arc<A>,
) -> Result<Arc<B>, (PodCastError, Arc<A>)> {
if align_of::<A>() != align_of::<B>() {
Err((PodCastError::AlignmentMismatch, input))
} else if size_of::<A>() != size_of::<B>() {
Err((PodCastError::SizeMismatch, input))
} else {
// Safety: Arc::from_raw requires size and alignment match, which is met.
let ptr: *const B = Arc::into_raw(input) as *const B;
Ok(unsafe { Arc::from_raw(ptr) })
}
}
/// As [`try_cast_slice_rc`](try_cast_slice_rc), but unwraps for you.
#[inline]
pub fn cast_slice_rc<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
input: Rc<[A]>,
) -> Rc<[B]> {
try_cast_slice_rc(input).map_err(|(e, _v)| e).unwrap()
}
/// Attempts to cast the content type of a `Rc<[T]>`.
///
/// On failure you get back an error along with the starting `Rc<[T]>`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Rc<[T]>` must have the exact same
/// alignment.
/// * The start and end content size in bytes of the `Rc<[T]>` must be the exact
/// same.
#[inline]
pub fn try_cast_slice_rc<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
input: Rc<[A]>,
) -> Result<Rc<[B]>, (PodCastError, Rc<[A]>)> {
if align_of::<A>() != align_of::<B>() {
Err((PodCastError::AlignmentMismatch, input))
} else if size_of::<A>() != size_of::<B>() {
if size_of::<A>() * input.len() % size_of::<B>() != 0 {
// If the size in bytes of the underlying buffer does not match an exact
// multiple of the size of B, we cannot cast between them.
Err((PodCastError::SizeMismatch, input))
} else {
// Because the size is an exact multiple, we can now change the length
// of the slice and recreate the Rc
// NOTE: This is a valid operation because according to the docs of
// std::rc::Rc::from_raw(), the type U that was in the original Rc<U>
// acquired from Rc::into_raw() must have the same size alignment and
// size of the type T in the new Rc<T>. So as long as both the size
// and alignment stay the same, the Rc will remain a valid Rc.
let length = size_of::<A>() * input.len() / size_of::<B>();
let rc_ptr: *const A = Rc::into_raw(input) as *const A;
// Must use ptr::slice_from_raw_parts, because we cannot make an
// intermediate const reference, because it has mutable provenance,
// nor an intermediate mutable reference, because it could be aliased.
let ptr = core::ptr::slice_from_raw_parts(rc_ptr as *const B, length);
Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
}
} else {
let rc_ptr: *const [A] = Rc::into_raw(input);
let ptr: *const [B] = rc_ptr as *const [B];
Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
}
}
/// As [`try_cast_slice_arc`](try_cast_slice_arc), but unwraps for you.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn cast_slice_arc<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
input: Arc<[A]>,
) -> Arc<[B]> {
try_cast_slice_arc(input).map_err(|(e, _v)| e).unwrap()
}
/// Attempts to cast the content type of a `Arc<[T]>`.
///
/// On failure you get back an error along with the starting `Arc<[T]>`.
///
/// The bounds on this function are the same as [`cast_mut`], because a user
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
/// in the input.
///
/// ## Failure
///
/// * The start and end content type of the `Arc<[T]>` must have the exact same
/// alignment.
/// * The start and end content size in bytes of the `Arc<[T]>` must be the
/// exact same.
#[inline]
#[cfg(target_has_atomic = "ptr")]
pub fn try_cast_slice_arc<
A: NoUninit + AnyBitPattern,
B: NoUninit + AnyBitPattern,
>(
input: Arc<[A]>,
) -> Result<Arc<[B]>, (PodCastError, Arc<[A]>)> {
if align_of::<A>() != align_of::<B>() {
Err((PodCastError::AlignmentMismatch, input))
} else if size_of::<A>() != size_of::<B>() {
if size_of::<A>() * input.len() % size_of::<B>() != 0 {
// If the size in bytes of the underlying buffer does not match an exact
// multiple of the size of B, we cannot cast between them.
Err((PodCastError::SizeMismatch, input))
} else {
// Because the size is an exact multiple, we can now change the length
// of the slice and recreate the Arc
// NOTE: This is a valid operation because according to the docs of
// std::sync::Arc::from_raw(), the type U that was in the original Arc<U>
// acquired from Arc::into_raw() must have the same size alignment and
// size of the type T in the new Arc<T>. So as long as both the size
// and alignment stay the same, the Arc will remain a valid Arc.
let length = size_of::<A>() * input.len() / size_of::<B>();
let arc_ptr: *const A = Arc::into_raw(input) as *const A;
// Must use ptr::slice_from_raw_parts, because we cannot make an
// intermediate const reference, because it has mutable provenance,
// nor an intermediate mutable reference, because it could be aliased.
let ptr = core::ptr::slice_from_raw_parts(arc_ptr as *const B, length);
Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
}
} else {
let arc_ptr: *const [A] = Arc::into_raw(input);
let ptr: *const [B] = arc_ptr as *const [B];
Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
}
}
/// An extension trait for `TransparentWrapper` and alloc types.
pub trait TransparentWrapperAlloc<Inner: ?Sized>:
TransparentWrapper<Inner>
{
/// Convert a vec of the inner type into a vec of the wrapper type.
fn wrap_vec(s: Vec<Inner>) -> Vec<Self>
where
Self: Sized,
Inner: Sized,
{
let mut s = core::mem::ManuallyDrop::new(s);
let length = s.len();
let capacity = s.capacity();
let ptr = s.as_mut_ptr();
unsafe {
// SAFETY:
// * ptr comes from Vec (and will not be double-dropped)
// * the two types have the identical representation
// * the len and capacity fields are valid
Vec::from_raw_parts(ptr as *mut Self, length, capacity)
}
}
/// Convert a box to the inner type into a box to the wrapper
/// type.
#[inline]
fn wrap_box(s: Box<Inner>) -> Box<Self> {
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
unsafe {
// A pointer cast doesn't work here because rustc can't tell that
// the vtables match (because of the `?Sized` restriction relaxation).
// A `transmute` doesn't work because the sizes are unspecified.
//
// SAFETY:
// * The unsafe contract requires that pointers to Inner and Self have
// identical representations
// * Box is guaranteed to have representation identical to a (non-null)
// pointer
// * The pointer comes from a box (and thus satisfies all safety
// requirements of Box)
let inner_ptr: *mut Inner = Box::into_raw(s);
let wrapper_ptr: *mut Self = transmute!(inner_ptr);
Box::from_raw(wrapper_ptr)
}
}
/// Convert an [`Rc`](alloc::rc::Rc) to the inner type into an `Rc` to the
/// wrapper type.
#[inline]
fn wrap_rc(s: Rc<Inner>) -> Rc<Self> {
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
unsafe {
// A pointer cast doesn't work here because rustc can't tell that
// the vtables match (because of the `?Sized` restriction relaxation).
// A `transmute` doesn't work because the layout of Rc is unspecified.
//
// SAFETY:
// * The unsafe contract requires that pointers to Inner and Self have
// identical representations, and that the size and alignment of Inner
// and Self are the same, which meets the safety requirements of
// Rc::from_raw
let inner_ptr: *const Inner = Rc::into_raw(s);
let wrapper_ptr: *const Self = transmute!(inner_ptr);
Rc::from_raw(wrapper_ptr)
}
}
/// Convert an [`Arc`](alloc::sync::Arc) to the inner type into an `Arc` to
/// the wrapper type.
#[inline]
#[cfg(target_has_atomic = "ptr")]
fn wrap_arc(s: Arc<Inner>) -> Arc<Self> {
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
unsafe {
// A pointer cast doesn't work here because rustc can't tell that
// the vtables match (because of the `?Sized` restriction relaxation).
// A `transmute` doesn't work because the layout of Arc is unspecified.
//
// SAFETY:
// * The unsafe contract requires that pointers to Inner and Self have
// identical representations, and that the size and alignment of Inner
// and Self are the same, which meets the safety requirements of
// Arc::from_raw
let inner_ptr: *const Inner = Arc::into_raw(s);
let wrapper_ptr: *const Self = transmute!(inner_ptr);
Arc::from_raw(wrapper_ptr)
}
}
/// Convert a vec of the wrapper type into a vec of the inner type.
fn peel_vec(s: Vec<Self>) -> Vec<Inner>
where
Self: Sized,
Inner: Sized,
{
let mut s = core::mem::ManuallyDrop::new(s);
let length = s.len();
let capacity = s.capacity();
let ptr = s.as_mut_ptr();
unsafe {
// SAFETY:
// * ptr comes from Vec (and will not be double-dropped)
// * the two types have the identical representation
// * the len and capacity fields are valid
Vec::from_raw_parts(ptr as *mut Inner, length, capacity)
}
}
/// Convert a box to the wrapper type into a box to the inner
/// type.
#[inline]
fn peel_box(s: Box<Self>) -> Box<Inner> {
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
unsafe {
// A pointer cast doesn't work here because rustc can't tell that
// the vtables match (because of the `?Sized` restriction relaxation).
// A `transmute` doesn't work because the sizes are unspecified.
//
// SAFETY:
// * The unsafe contract requires that pointers to Inner and Self have
// identical representations
// * Box is guaranteed to have representation identical to a (non-null)
// pointer
// * The pointer comes from a box (and thus satisfies all safety
// requirements of Box)
let wrapper_ptr: *mut Self = Box::into_raw(s);
let inner_ptr: *mut Inner = transmute!(wrapper_ptr);
Box::from_raw(inner_ptr)
}
}
/// Convert an [`Rc`](alloc::rc::Rc) to the wrapper type into an `Rc` to the
/// inner type.
#[inline]
fn peel_rc(s: Rc<Self>) -> Rc<Inner> {
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
unsafe {
// A pointer cast doesn't work here because rustc can't tell that
// the vtables match (because of the `?Sized` restriction relaxation).
// A `transmute` doesn't work because the layout of Rc is unspecified.
//
// SAFETY:
// * The unsafe contract requires that pointers to Inner and Self have
// identical representations, and that the size and alignment of Inner
// and Self are the same, which meets the safety requirements of
// Rc::from_raw
let wrapper_ptr: *const Self = Rc::into_raw(s);
let inner_ptr: *const Inner = transmute!(wrapper_ptr);
Rc::from_raw(inner_ptr)
}
}
/// Convert an [`Arc`](alloc::sync::Arc) to the wrapper type into an `Arc` to
/// the inner type.
#[inline]
#[cfg(target_has_atomic = "ptr")]
fn peel_arc(s: Arc<Self>) -> Arc<Inner> {
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
unsafe {
// A pointer cast doesn't work here because rustc can't tell that
// the vtables match (because of the `?Sized` restriction relaxation).
// A `transmute` doesn't work because the layout of Arc is unspecified.
//
// SAFETY:
// * The unsafe contract requires that pointers to Inner and Self have
// identical representations, and that the size and alignment of Inner
// and Self are the same, which meets the safety requirements of
// Arc::from_raw
let wrapper_ptr: *const Self = Arc::into_raw(s);
let inner_ptr: *const Inner = transmute!(wrapper_ptr);
Arc::from_raw(inner_ptr)
}
}
}
impl<I: ?Sized, T: TransparentWrapper<I>> TransparentWrapperAlloc<I> for T {}