1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
// There's a lot of scary concurrent code in this module, but it is copied from
// `std::sync::Once` with two changes:
//   * no poisoning
//   * init function can fail

use std::{
    cell::{Cell, UnsafeCell},
    marker::PhantomData,
    panic::{RefUnwindSafe, UnwindSafe},
    sync::atomic::{AtomicBool, AtomicPtr, Ordering},
    thread::{self, Thread},
};

#[derive(Debug)]
pub(crate) struct OnceCell<T> {
    // This `queue` field is the core of the implementation. It encodes two
    // pieces of information:
    //
    // * The current state of the cell (`INCOMPLETE`, `RUNNING`, `COMPLETE`)
    // * Linked list of threads waiting for the current cell.
    //
    // State is encoded in two low bits. Only `INCOMPLETE` and `RUNNING` states
    // allow waiters.
    queue: AtomicPtr<Waiter>,
    _marker: PhantomData<*mut Waiter>,
    value: UnsafeCell<Option<T>>,
}

// Why do we need `T: Send`?
// Thread A creates a `OnceCell` and shares it with
// scoped thread B, which fills the cell, which is
// then destroyed by A. That is, destructor observes
// a sent value.
unsafe impl<T: Sync + Send> Sync for OnceCell<T> {}
unsafe impl<T: Send> Send for OnceCell<T> {}

impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}

impl<T> OnceCell<T> {
    pub(crate) const fn new() -> OnceCell<T> {
        OnceCell {
            queue: AtomicPtr::new(INCOMPLETE_PTR),
            _marker: PhantomData,
            value: UnsafeCell::new(None),
        }
    }

    pub(crate) const fn with_value(value: T) -> OnceCell<T> {
        OnceCell {
            queue: AtomicPtr::new(COMPLETE_PTR),
            _marker: PhantomData,
            value: UnsafeCell::new(Some(value)),
        }
    }

    /// Safety: synchronizes with store to value via Release/(Acquire|SeqCst).
    #[inline]
    pub(crate) fn is_initialized(&self) -> bool {
        // An `Acquire` load is enough because that makes all the initialization
        // operations visible to us, and, this being a fast path, weaker
        // ordering helps with performance. This `Acquire` synchronizes with
        // `SeqCst` operations on the slow path.
        self.queue.load(Ordering::Acquire) == COMPLETE_PTR
    }

    /// Safety: synchronizes with store to value via SeqCst read from state,
    /// writes value only once because we never get to INCOMPLETE state after a
    /// successful write.
    #[cold]
    pub(crate) fn initialize<F, E>(&self, f: F) -> Result<(), E>
    where
        F: FnOnce() -> Result<T, E>,
    {
        let mut f = Some(f);
        let mut res: Result<(), E> = Ok(());
        let slot: *mut Option<T> = self.value.get();
        initialize_or_wait(
            &self.queue,
            Some(&mut || {
                let f = unsafe { crate::unwrap_unchecked(f.take()) };
                match f() {
                    Ok(value) => {
                        unsafe { *slot = Some(value) };
                        true
                    }
                    Err(err) => {
                        res = Err(err);
                        false
                    }
                }
            }),
        );
        res
    }

    #[cold]
    pub(crate) fn wait(&self) {
        initialize_or_wait(&self.queue, None);
    }

    /// Get the reference to the underlying value, without checking if the cell
    /// is initialized.
    ///
    /// # Safety
    ///
    /// Caller must ensure that the cell is in initialized state, and that
    /// the contents are acquired by (synchronized to) this thread.
    pub(crate) unsafe fn get_unchecked(&self) -> &T {
        debug_assert!(self.is_initialized());
        let slot = &*self.value.get();
        crate::unwrap_unchecked(slot.as_ref())
    }

    /// Gets the mutable reference to the underlying value.
    /// Returns `None` if the cell is empty.
    pub(crate) fn get_mut(&mut self) -> Option<&mut T> {
        // Safe b/c we have a unique access.
        unsafe { &mut *self.value.get() }.as_mut()
    }

    /// Consumes this `OnceCell`, returning the wrapped value.
    /// Returns `None` if the cell was empty.
    #[inline]
    pub(crate) fn into_inner(self) -> Option<T> {
        // Because `into_inner` takes `self` by value, the compiler statically
        // verifies that it is not currently borrowed.
        // So, it is safe to move out `Option<T>`.
        self.value.into_inner()
    }
}

// Three states that a OnceCell can be in, encoded into the lower bits of `queue` in
// the OnceCell structure.
const INCOMPLETE: usize = 0x0;
const RUNNING: usize = 0x1;
const COMPLETE: usize = 0x2;
const INCOMPLETE_PTR: *mut Waiter = INCOMPLETE as *mut Waiter;
const COMPLETE_PTR: *mut Waiter = COMPLETE as *mut Waiter;

// Mask to learn about the state. All other bits are the queue of waiters if
// this is in the RUNNING state.
const STATE_MASK: usize = 0x3;

/// Representation of a node in the linked list of waiters in the RUNNING state.
/// A waiters is stored on the stack of the waiting threads.
#[repr(align(4))] // Ensure the two lower bits are free to use as state bits.
struct Waiter {
    thread: Cell<Option<Thread>>,
    signaled: AtomicBool,
    next: *mut Waiter,
}

/// Drains and notifies the queue of waiters on drop.
struct Guard<'a> {
    queue: &'a AtomicPtr<Waiter>,
    new_queue: *mut Waiter,
}

impl Drop for Guard<'_> {
    fn drop(&mut self) {
        let queue = self.queue.swap(self.new_queue, Ordering::AcqRel);

        let state = strict::addr(queue) & STATE_MASK;
        assert_eq!(state, RUNNING);

        unsafe {
            let mut waiter = strict::map_addr(queue, |q| q & !STATE_MASK);
            while !waiter.is_null() {
                let next = (*waiter).next;
                let thread = (*waiter).thread.take().unwrap();
                (*waiter).signaled.store(true, Ordering::Release);
                waiter = next;
                thread.unpark();
            }
        }
    }
}

// Corresponds to `std::sync::Once::call_inner`.
//
// Originally copied from std, but since modified to remove poisoning and to
// support wait.
//
// Note: this is intentionally monomorphic
#[inline(never)]
fn initialize_or_wait(queue: &AtomicPtr<Waiter>, mut init: Option<&mut dyn FnMut() -> bool>) {
    let mut curr_queue = queue.load(Ordering::Acquire);

    loop {
        let curr_state = strict::addr(curr_queue) & STATE_MASK;
        match (curr_state, &mut init) {
            (COMPLETE, _) => return,
            (INCOMPLETE, Some(init)) => {
                let exchange = queue.compare_exchange(
                    curr_queue,
                    strict::map_addr(curr_queue, |q| (q & !STATE_MASK) | RUNNING),
                    Ordering::Acquire,
                    Ordering::Acquire,
                );
                if let Err(new_queue) = exchange {
                    curr_queue = new_queue;
                    continue;
                }
                let mut guard = Guard { queue, new_queue: INCOMPLETE_PTR };
                if init() {
                    guard.new_queue = COMPLETE_PTR;
                }
                return;
            }
            (INCOMPLETE, None) | (RUNNING, _) => {
                wait(&queue, curr_queue);
                curr_queue = queue.load(Ordering::Acquire);
            }
            _ => debug_assert!(false),
        }
    }
}

fn wait(queue: &AtomicPtr<Waiter>, mut curr_queue: *mut Waiter) {
    let curr_state = strict::addr(curr_queue) & STATE_MASK;
    loop {
        let node = Waiter {
            thread: Cell::new(Some(thread::current())),
            signaled: AtomicBool::new(false),
            next: strict::map_addr(curr_queue, |q| q & !STATE_MASK),
        };
        let me = &node as *const Waiter as *mut Waiter;

        let exchange = queue.compare_exchange(
            curr_queue,
            strict::map_addr(me, |q| q | curr_state),
            Ordering::Release,
            Ordering::Relaxed,
        );
        if let Err(new_queue) = exchange {
            if strict::addr(new_queue) & STATE_MASK != curr_state {
                return;
            }
            curr_queue = new_queue;
            continue;
        }

        while !node.signaled.load(Ordering::Acquire) {
            thread::park();
        }
        break;
    }
}

// Polyfill of strict provenance from https://crates.io/crates/sptr.
//
// Use free-standing function rather than a trait to keep things simple and
// avoid any potential conflicts with future stabile std API.
mod strict {
    #[must_use]
    #[inline]
    pub(crate) fn addr<T>(ptr: *mut T) -> usize
    where
        T: Sized,
    {
        // FIXME(strict_provenance_magic): I am magic and should be a compiler intrinsic.
        // SAFETY: Pointer-to-integer transmutes are valid (if you are okay with losing the
        // provenance).
        unsafe { core::mem::transmute(ptr) }
    }

    #[must_use]
    #[inline]
    pub(crate) fn with_addr<T>(ptr: *mut T, addr: usize) -> *mut T
    where
        T: Sized,
    {
        // FIXME(strict_provenance_magic): I am magic and should be a compiler intrinsic.
        //
        // In the mean-time, this operation is defined to be "as if" it was
        // a wrapping_offset, so we can emulate it as such. This should properly
        // restore pointer provenance even under today's compiler.
        let self_addr = self::addr(ptr) as isize;
        let dest_addr = addr as isize;
        let offset = dest_addr.wrapping_sub(self_addr);

        // This is the canonical desugarring of this operation,
        // but `pointer::cast` was only stabilized in 1.38.
        // self.cast::<u8>().wrapping_offset(offset).cast::<T>()
        (ptr as *mut u8).wrapping_offset(offset) as *mut T
    }

    #[must_use]
    #[inline]
    pub(crate) fn map_addr<T>(ptr: *mut T, f: impl FnOnce(usize) -> usize) -> *mut T
    where
        T: Sized,
    {
        self::with_addr(ptr, f(addr(ptr)))
    }
}

// These test are snatched from std as well.
#[cfg(test)]
mod tests {
    use std::panic;
    use std::{sync::mpsc::channel, thread};

    use super::OnceCell;

    impl<T> OnceCell<T> {
        fn init(&self, f: impl FnOnce() -> T) {
            enum Void {}
            let _ = self.initialize(|| Ok::<T, Void>(f()));
        }
    }

    #[test]
    fn smoke_once() {
        static O: OnceCell<()> = OnceCell::new();
        let mut a = 0;
        O.init(|| a += 1);
        assert_eq!(a, 1);
        O.init(|| a += 1);
        assert_eq!(a, 1);
    }

    #[test]
    fn stampede_once() {
        static O: OnceCell<()> = OnceCell::new();
        static mut RUN: bool = false;

        let (tx, rx) = channel();
        for _ in 0..10 {
            let tx = tx.clone();
            thread::spawn(move || {
                for _ in 0..4 {
                    thread::yield_now()
                }
                unsafe {
                    O.init(|| {
                        assert!(!RUN);
                        RUN = true;
                    });
                    assert!(RUN);
                }
                tx.send(()).unwrap();
            });
        }

        unsafe {
            O.init(|| {
                assert!(!RUN);
                RUN = true;
            });
            assert!(RUN);
        }

        for _ in 0..10 {
            rx.recv().unwrap();
        }
    }

    #[test]
    fn poison_bad() {
        static O: OnceCell<()> = OnceCell::new();

        // poison the once
        let t = panic::catch_unwind(|| {
            O.init(|| panic!());
        });
        assert!(t.is_err());

        // we can subvert poisoning, however
        let mut called = false;
        O.init(|| {
            called = true;
        });
        assert!(called);

        // once any success happens, we stop propagating the poison
        O.init(|| {});
    }

    #[test]
    fn wait_for_force_to_finish() {
        static O: OnceCell<()> = OnceCell::new();

        // poison the once
        let t = panic::catch_unwind(|| {
            O.init(|| panic!());
        });
        assert!(t.is_err());

        // make sure someone's waiting inside the once via a force
        let (tx1, rx1) = channel();
        let (tx2, rx2) = channel();
        let t1 = thread::spawn(move || {
            O.init(|| {
                tx1.send(()).unwrap();
                rx2.recv().unwrap();
            });
        });

        rx1.recv().unwrap();

        // put another waiter on the once
        let t2 = thread::spawn(|| {
            let mut called = false;
            O.init(|| {
                called = true;
            });
            assert!(!called);
        });

        tx2.send(()).unwrap();

        assert!(t1.join().is_ok());
        assert!(t2.join().is_ok());
    }

    #[test]
    #[cfg(target_pointer_width = "64")]
    fn test_size() {
        use std::mem::size_of;

        assert_eq!(size_of::<OnceCell<u32>>(), 4 * size_of::<u32>());
    }
}