1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*!
Wrapper routines for `memchr` and friends.

These routines efficiently dispatch to the best implementation based on what
the CPU supports.
*/

/// Provides a way to run a memchr-like function while amortizing the cost of
/// runtime CPU feature detection.
///
/// This works by loading a function pointer from an atomic global. Initially,
/// this global is set to a function that does CPU feature detection. For
/// example, if AVX2 is enabled, then the AVX2 implementation is used.
/// Otherwise, at least on x86_64, the SSE2 implementation is used. (And
/// in some niche cases, if SSE2 isn't available, then the architecture
/// independent fallback implementation is used.)
///
/// After the first call to this function, the atomic global is replaced with
/// the specific AVX2, SSE2 or fallback routine chosen. Subsequent calls then
/// will directly call the chosen routine instead of needing to go through the
/// CPU feature detection branching again.
///
/// This particular macro is specifically written to provide the implementation
/// of functions with the following signature:
///
/// ```ignore
/// fn memchr(needle1: u8, start: *const u8, end: *const u8) -> Option<usize>;
/// ```
///
/// Where you can also have `memchr2` and `memchr3`, but with `needle2` and
/// `needle3`, respectively. The `start` and `end` parameters correspond to the
/// start and end of the haystack, respectively.
///
/// We use raw pointers here instead of the more obvious `haystack: &[u8]` so
/// that the function is compatible with our lower level iterator logic that
/// operates on raw pointers. We use this macro to implement "raw" memchr
/// routines with the signature above, and then define memchr routines using
/// regular slices on top of them.
///
/// Note that we use `#[cfg(target_feature = "sse2")]` below even though
/// it shouldn't be strictly necessary because without it, it seems to
/// cause the compiler to blow up. I guess it can't handle a function
/// pointer being created with a sse target feature? Dunno. See the
/// `build-for-x86-64-but-non-sse-target` CI job if you want to experiment with
/// this.
///
/// # Safety
///
/// Primarily callers must that `$fnty` is a correct function pointer type and
/// not something else.
///
/// Callers must also ensure that `$memchrty::$memchrfind` corresponds to a
/// routine that returns a valid function pointer when a match is found. That
/// is, a pointer that is `>= start` and `< end`.
///
/// Callers must also ensure that the `$hay_start` and `$hay_end` identifiers
/// correspond to valid pointers.
macro_rules! unsafe_ifunc {
    (
        $memchrty:ident,
        $memchrfind:ident,
        $fnty:ty,
        $retty:ty,
        $hay_start:ident,
        $hay_end:ident,
        $($needle:ident),+
    ) => {{
        #![allow(unused_unsafe)]

        use core::sync::atomic::{AtomicPtr, Ordering};

        type Fn = *mut ();
        type RealFn = $fnty;
        static FN: AtomicPtr<()> = AtomicPtr::new(detect as Fn);

        #[cfg(target_feature = "sse2")]
        #[target_feature(enable = "sse2", enable = "avx2")]
        unsafe fn find_avx2(
            $($needle: u8),+,
            $hay_start: *const u8,
            $hay_end: *const u8,
        ) -> $retty {
            use crate::arch::x86_64::avx2::memchr::$memchrty;
            $memchrty::new_unchecked($($needle),+)
                .$memchrfind($hay_start, $hay_end)
        }

        #[cfg(target_feature = "sse2")]
        #[target_feature(enable = "sse2")]
        unsafe fn find_sse2(
            $($needle: u8),+,
            $hay_start: *const u8,
            $hay_end: *const u8,
        ) -> $retty {
            use crate::arch::x86_64::sse2::memchr::$memchrty;
            $memchrty::new_unchecked($($needle),+)
                .$memchrfind($hay_start, $hay_end)
        }

        unsafe fn find_fallback(
            $($needle: u8),+,
            $hay_start: *const u8,
            $hay_end: *const u8,
        ) -> $retty {
            use crate::arch::all::memchr::$memchrty;
            $memchrty::new($($needle),+).$memchrfind($hay_start, $hay_end)
        }

        unsafe fn detect(
            $($needle: u8),+,
            $hay_start: *const u8,
            $hay_end: *const u8,
        ) -> $retty {
            let fun = {
                #[cfg(not(target_feature = "sse2"))]
                {
                    debug!(
                        "no sse2 feature available, using fallback for {}",
                        stringify!($memchrty),
                    );
                    find_fallback as RealFn
                }
                #[cfg(target_feature = "sse2")]
                {
                    use crate::arch::x86_64::{sse2, avx2};
                    if avx2::memchr::$memchrty::is_available() {
                        debug!("chose AVX2 for {}", stringify!($memchrty));
                        find_avx2 as RealFn
                    } else if sse2::memchr::$memchrty::is_available() {
                        debug!("chose SSE2 for {}", stringify!($memchrty));
                        find_sse2 as RealFn
                    } else {
                        debug!("chose fallback for {}", stringify!($memchrty));
                        find_fallback as RealFn
                    }
                }
            };
            FN.store(fun as Fn, Ordering::Relaxed);
            // SAFETY: The only thing we need to uphold here is the
            // `#[target_feature]` requirements. Since we check is_available
            // above before using the corresponding implementation, we are
            // guaranteed to only call code that is supported on the current
            // CPU.
            fun($($needle),+, $hay_start, $hay_end)
        }

        // SAFETY: By virtue of the caller contract, RealFn is a function
        // pointer, which is always safe to transmute with a *mut (). Also,
        // since we use $memchrty::is_available, it is guaranteed to be safe
        // to call $memchrty::$memchrfind.
        unsafe {
            let fun = FN.load(Ordering::Relaxed);
            core::mem::transmute::<Fn, RealFn>(fun)(
                $($needle),+,
                $hay_start,
                $hay_end,
            )
        }
    }};
}

// The routines below dispatch to AVX2, SSE2 or a fallback routine based on
// what's available in the current environment. The secret sauce here is that
// we only check for which one to use approximately once, and then "cache" that
// choice into a global function pointer. Subsequent invocations then just call
// the appropriate function directly.

/// memchr, but using raw pointers to represent the haystack.
///
/// # Safety
///
/// Pointers must be valid. See `One::find_raw`.
#[inline(always)]
pub(crate) fn memchr_raw(
    n1: u8,
    start: *const u8,
    end: *const u8,
) -> Option<*const u8> {
    // SAFETY: We provide a valid function pointer type.
    unsafe_ifunc!(
        One,
        find_raw,
        unsafe fn(u8, *const u8, *const u8) -> Option<*const u8>,
        Option<*const u8>,
        start,
        end,
        n1
    )
}

/// memrchr, but using raw pointers to represent the haystack.
///
/// # Safety
///
/// Pointers must be valid. See `One::rfind_raw`.
#[inline(always)]
pub(crate) fn memrchr_raw(
    n1: u8,
    start: *const u8,
    end: *const u8,
) -> Option<*const u8> {
    // SAFETY: We provide a valid function pointer type.
    unsafe_ifunc!(
        One,
        rfind_raw,
        unsafe fn(u8, *const u8, *const u8) -> Option<*const u8>,
        Option<*const u8>,
        start,
        end,
        n1
    )
}

/// memchr2, but using raw pointers to represent the haystack.
///
/// # Safety
///
/// Pointers must be valid. See `Two::find_raw`.
#[inline(always)]
pub(crate) fn memchr2_raw(
    n1: u8,
    n2: u8,
    start: *const u8,
    end: *const u8,
) -> Option<*const u8> {
    // SAFETY: We provide a valid function pointer type.
    unsafe_ifunc!(
        Two,
        find_raw,
        unsafe fn(u8, u8, *const u8, *const u8) -> Option<*const u8>,
        Option<*const u8>,
        start,
        end,
        n1,
        n2
    )
}

/// memrchr2, but using raw pointers to represent the haystack.
///
/// # Safety
///
/// Pointers must be valid. See `Two::rfind_raw`.
#[inline(always)]
pub(crate) fn memrchr2_raw(
    n1: u8,
    n2: u8,
    start: *const u8,
    end: *const u8,
) -> Option<*const u8> {
    // SAFETY: We provide a valid function pointer type.
    unsafe_ifunc!(
        Two,
        rfind_raw,
        unsafe fn(u8, u8, *const u8, *const u8) -> Option<*const u8>,
        Option<*const u8>,
        start,
        end,
        n1,
        n2
    )
}

/// memchr3, but using raw pointers to represent the haystack.
///
/// # Safety
///
/// Pointers must be valid. See `Three::find_raw`.
#[inline(always)]
pub(crate) fn memchr3_raw(
    n1: u8,
    n2: u8,
    n3: u8,
    start: *const u8,
    end: *const u8,
) -> Option<*const u8> {
    // SAFETY: We provide a valid function pointer type.
    unsafe_ifunc!(
        Three,
        find_raw,
        unsafe fn(u8, u8, u8, *const u8, *const u8) -> Option<*const u8>,
        Option<*const u8>,
        start,
        end,
        n1,
        n2,
        n3
    )
}

/// memrchr3, but using raw pointers to represent the haystack.
///
/// # Safety
///
/// Pointers must be valid. See `Three::rfind_raw`.
#[inline(always)]
pub(crate) fn memrchr3_raw(
    n1: u8,
    n2: u8,
    n3: u8,
    start: *const u8,
    end: *const u8,
) -> Option<*const u8> {
    // SAFETY: We provide a valid function pointer type.
    unsafe_ifunc!(
        Three,
        rfind_raw,
        unsafe fn(u8, u8, u8, *const u8, *const u8) -> Option<*const u8>,
        Option<*const u8>,
        start,
        end,
        n1,
        n2,
        n3
    )
}

/// Count all matching bytes, but using raw pointers to represent the haystack.
///
/// # Safety
///
/// Pointers must be valid. See `One::count_raw`.
#[inline(always)]
pub(crate) fn count_raw(n1: u8, start: *const u8, end: *const u8) -> usize {
    // SAFETY: We provide a valid function pointer type.
    unsafe_ifunc!(
        One,
        count_raw,
        unsafe fn(u8, *const u8, *const u8) -> usize,
        usize,
        start,
        end,
        n1
    )
}