1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use super::{stream::FormatErrorInner, DecodingError, CHUNCK_BUFFER_SIZE};

use fdeflate::Decompressor;

/// Ergonomics wrapper around `miniz_oxide::inflate::stream` for zlib compressed data.
pub(super) struct ZlibStream {
    /// Current decoding state.
    state: Box<fdeflate::Decompressor>,
    /// If there has been a call to decompress already.
    started: bool,
    /// Remaining buffered decoded bytes.
    /// The decoder sometimes wants inspect some already finished bytes for further decoding. So we
    /// keep a total of 32KB of decoded data available as long as more data may be appended.
    out_buffer: Vec<u8>,
    /// The first index of `out_buffer` where new data can be written.
    out_pos: usize,
    /// The first index of `out_buffer` that hasn't yet been passed to our client
    /// (i.e. not yet appended to the `image_data` parameter of `fn decompress` or `fn
    /// finish_compressed_chunks`).
    read_pos: usize,
    /// Limit on how many bytes can be decompressed in total.  This field is mostly used for
    /// performance optimizations (e.g. to avoid allocating and zeroing out large buffers when only
    /// a small image is being decoded).
    max_total_output: usize,
    /// Ignore and do not calculate the Adler-32 checksum. Defaults to `true`.
    ///
    /// This flag overrides `TINFL_FLAG_COMPUTE_ADLER32`.
    ///
    /// This flag should not be modified after decompression has started.
    ignore_adler32: bool,
}

impl ZlibStream {
    pub(crate) fn new() -> Self {
        ZlibStream {
            state: Box::new(Decompressor::new()),
            started: false,
            out_buffer: Vec::new(),
            out_pos: 0,
            read_pos: 0,
            max_total_output: usize::MAX,
            ignore_adler32: true,
        }
    }

    pub(crate) fn reset(&mut self) {
        self.started = false;
        self.out_buffer.clear();
        self.out_pos = 0;
        self.read_pos = 0;
        self.max_total_output = usize::MAX;
        *self.state = Decompressor::new();
    }

    pub(crate) fn set_max_total_output(&mut self, n: usize) {
        self.max_total_output = n;
    }

    /// Set the `ignore_adler32` flag and return `true` if the flag was
    /// successfully set.
    ///
    /// The default is `true`.
    ///
    /// This flag cannot be modified after decompression has started until the
    /// [ZlibStream] is reset.
    pub(crate) fn set_ignore_adler32(&mut self, flag: bool) -> bool {
        if !self.started {
            self.ignore_adler32 = flag;
            true
        } else {
            false
        }
    }

    /// Return the `ignore_adler32` flag.
    pub(crate) fn ignore_adler32(&self) -> bool {
        self.ignore_adler32
    }

    /// Fill the decoded buffer as far as possible from `data`.
    /// On success returns the number of consumed input bytes.
    pub(crate) fn decompress(
        &mut self,
        data: &[u8],
        image_data: &mut Vec<u8>,
    ) -> Result<usize, DecodingError> {
        // There may be more data past the adler32 checksum at the end of the deflate stream. We
        // match libpng's default behavior and ignore any trailing data. In the future we may want
        // to add a flag to control this behavior.
        if self.state.is_done() {
            return Ok(data.len());
        }

        self.prepare_vec_for_appending();

        if !self.started && self.ignore_adler32 {
            self.state.ignore_adler32();
        }

        let (in_consumed, out_consumed) = self
            .state
            .read(data, self.out_buffer.as_mut_slice(), self.out_pos, false)
            .map_err(|err| {
                DecodingError::Format(FormatErrorInner::CorruptFlateStream { err }.into())
            })?;

        self.started = true;
        self.out_pos += out_consumed;
        self.transfer_finished_data(image_data);
        self.compact_out_buffer_if_needed();

        Ok(in_consumed)
    }

    /// Called after all consecutive IDAT chunks were handled.
    ///
    /// The compressed stream can be split on arbitrary byte boundaries. This enables some cleanup
    /// within the decompressor and flushing additional data which may have been kept back in case
    /// more data were passed to it.
    pub(crate) fn finish_compressed_chunks(
        &mut self,
        image_data: &mut Vec<u8>,
    ) -> Result<(), DecodingError> {
        if !self.started {
            return Ok(());
        }

        while !self.state.is_done() {
            self.prepare_vec_for_appending();
            let (_in_consumed, out_consumed) = self
                .state
                .read(&[], self.out_buffer.as_mut_slice(), self.out_pos, true)
                .map_err(|err| {
                    DecodingError::Format(FormatErrorInner::CorruptFlateStream { err }.into())
                })?;

            self.out_pos += out_consumed;

            if !self.state.is_done() {
                let transferred = self.transfer_finished_data(image_data);
                assert!(
                    transferred > 0 || out_consumed > 0,
                    "No more forward progress made in stream decoding."
                );
                self.compact_out_buffer_if_needed();
            }
        }

        self.transfer_finished_data(image_data);
        self.out_buffer.clear();
        Ok(())
    }

    /// Resize the vector to allow allocation of more data.
    fn prepare_vec_for_appending(&mut self) {
        // The `debug_assert` below explains why we can use `>=` instead of `>` in the condition
        // that compares `self.out_post >= self.max_total_output` in the next `if` statement.
        debug_assert!(!self.state.is_done());
        if self.out_pos >= self.max_total_output {
            // This can happen when the `max_total_output` was miscalculated (e.g.
            // because the `IHDR` chunk was malformed and didn't match the `IDAT` chunk).  In
            // this case, let's reset `self.max_total_output` before further calculations.
            self.max_total_output = usize::MAX;
        }

        let current_len = self.out_buffer.len();
        let desired_len = self
            .out_pos
            .saturating_add(CHUNCK_BUFFER_SIZE)
            .min(self.max_total_output);
        if current_len >= desired_len {
            return;
        }

        let buffered_len = self.decoding_size(self.out_buffer.len());
        debug_assert!(self.out_buffer.len() <= buffered_len);
        self.out_buffer.resize(buffered_len, 0u8);
    }

    fn decoding_size(&self, len: usize) -> usize {
        // Allocate one more chunk size than currently or double the length while ensuring that the
        // allocation is valid and that any cursor within it will be valid.
        len
            // This keeps the buffer size a power-of-two, required by miniz_oxide.
            .saturating_add(CHUNCK_BUFFER_SIZE.max(len))
            // Ensure all buffer indices are valid cursor positions.
            // Note: both cut off and zero extension give correct results.
            .min(u64::max_value() as usize)
            // Ensure the allocation request is valid.
            // TODO: maximum allocation limits?
            .min(isize::max_value() as usize)
            // Don't unnecessarily allocate more than `max_total_output`.
            .min(self.max_total_output)
    }

    fn transfer_finished_data(&mut self, image_data: &mut Vec<u8>) -> usize {
        let transferred = &self.out_buffer[self.read_pos..self.out_pos];
        image_data.extend_from_slice(transferred);
        self.read_pos = self.out_pos;
        transferred.len()
    }

    fn compact_out_buffer_if_needed(&mut self) {
        // [PNG spec](https://www.w3.org/TR/2003/REC-PNG-20031110/#10Compression) says that
        // "deflate/inflate compression with a sliding window (which is an upper bound on the
        // distances appearing in the deflate stream) of at most 32768 bytes".
        //
        // `fdeflate` requires that we keep this many most recently decompressed bytes in the
        // `out_buffer` - this allows referring back to them when handling "length and distance
        // codes" in the deflate stream).
        const LOOKBACK_SIZE: usize = 32768;

        // Compact `self.out_buffer` when "needed".  Doing this conditionally helps to put an upper
        // bound on the amortized cost of copying the data within `self.out_buffer`.
        //
        // TODO: The factor of 4 is an ad-hoc heuristic.  Consider measuring and using a different
        // factor.  (Early experiments seem to indicate that factor of 4 is faster than a factor of
        // 2 and 4 * `LOOKBACK_SIZE` seems like an acceptable memory trade-off.  Higher factors
        // result in higher memory usage, but the compaction cost is lower - factor of 4 means
        // that 1 byte gets copied during compaction for 3 decompressed bytes.)
        if self.out_pos > LOOKBACK_SIZE * 4 {
            // Only preserve the `lookback_buffer` and "throw away" the earlier prefix.
            let lookback_buffer = self.out_pos.saturating_sub(LOOKBACK_SIZE)..self.out_pos;
            let preserved_len = lookback_buffer.len();
            self.out_buffer.copy_within(lookback_buffer, 0);
            self.read_pos = preserved_len;
            self.out_pos = preserved_len;
        }
    }
}