Trait typenum::type_operators::Gcd
source · pub trait Gcd<Rhs> {
type Output;
}
Expand description
A type operator that computes the greatest common divisor of Self
and Rhs
.
Example
use typenum::{Gcd, Unsigned, U12, U8};
assert_eq!(<U12 as Gcd<U8>>::Output::to_i32(), 4);
Required Associated Types§
Implementors§
source§impl<U1, U2> Gcd<NInt<U2>> for NInt<U1>where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
impl<U1, U2> Gcd<NInt<U2>> for NInt<U1>where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,
source§impl<U1, U2> Gcd<NInt<U2>> for PInt<U1>where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
impl<U1, U2> Gcd<NInt<U2>> for PInt<U1>where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,
source§impl<U1, U2> Gcd<PInt<U2>> for NInt<U1>where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
impl<U1, U2> Gcd<PInt<U2>> for NInt<U1>where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,
source§impl<U1, U2> Gcd<PInt<U2>> for PInt<U1>where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
impl<U1, U2> Gcd<PInt<U2>> for PInt<U1>where U1: Unsigned + NonZero + Gcd<U2>, U2: Unsigned + NonZero, Gcf<U1, U2>: Unsigned + NonZero,
source§impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0>where
Xp: Gcd<Yp>,
UInt<Xp, B0>: NonZero,
UInt<Yp, B0>: NonZero,
impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0>where Xp: Gcd<Yp>, UInt<Xp, B0>: NonZero, UInt<Yp, B0>: NonZero,
gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even
source§impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1>where
UInt<Xp, B1>: Gcd<Yp>,
UInt<Yp, B0>: NonZero,
impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1>where UInt<Xp, B1>: Gcd<Yp>, UInt<Yp, B0>: NonZero,
gcd(x, y) = gcd(x, y/2) if x odd and y even
source§impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0>where
Xp: Gcd<UInt<Yp, B1>>,
UInt<Xp, B0>: NonZero,
impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0>where Xp: Gcd<UInt<Yp, B1>>, UInt<Xp, B0>: NonZero,
gcd(x, y) = gcd(x/2, y) if x even and y odd
source§impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1>where
UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1>where UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>, UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>, Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>, Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd
This will immediately invoke the case for x even and y odd because the difference of two odd numbers is an even number.