1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
mod stream;
mod zlib;
pub use self::stream::{DecodeOptions, Decoded, DecodingError, StreamingDecoder};
use self::stream::{FormatErrorInner, CHUNCK_BUFFER_SIZE};
use std::io::{BufRead, BufReader, Read, Write};
use std::mem;
use std::ops::Range;
use crate::chunk;
use crate::common::{
BitDepth, BytesPerPixel, ColorType, Info, ParameterErrorKind, Transformations,
};
use crate::filter::{unfilter, FilterType};
use crate::utils;
/*
pub enum InterlaceHandling {
/// Outputs the raw rows
RawRows,
/// Fill missing the pixels from the existing ones
Rectangle,
/// Only fill the needed pixels
Sparkle
}
*/
/// Output info.
///
/// This describes one particular frame of the image that was written into the output buffer.
#[derive(Debug, PartialEq, Eq)]
pub struct OutputInfo {
/// The pixel width of this frame.
pub width: u32,
/// The pixel height of this frame.
pub height: u32,
/// The chosen output color type.
pub color_type: ColorType,
/// The chosen output bit depth.
pub bit_depth: BitDepth,
/// The byte count of each scan line in the image.
pub line_size: usize,
}
impl OutputInfo {
/// Returns the size needed to hold a decoded frame
/// If the output buffer was larger then bytes after this count should be ignored. They may
/// still have been changed.
pub fn buffer_size(&self) -> usize {
self.line_size * self.height as usize
}
}
#[derive(Clone, Copy, Debug)]
/// Limits on the resources the `Decoder` is allowed too use
pub struct Limits {
/// maximum number of bytes the decoder is allowed to allocate, default is 64Mib
pub bytes: usize,
}
impl Default for Limits {
fn default() -> Limits {
Limits {
bytes: 1024 * 1024 * 64,
}
}
}
/// PNG Decoder
pub struct Decoder<R: Read> {
read_decoder: ReadDecoder<R>,
/// Output transformations
transform: Transformations,
/// Limits on resources the Decoder is allowed to use
limits: Limits,
}
/// A row of data with interlace information attached.
#[derive(Clone, Copy, Debug)]
pub struct InterlacedRow<'data> {
data: &'data [u8],
interlace: InterlaceInfo,
}
impl<'data> InterlacedRow<'data> {
pub fn data(&self) -> &'data [u8] {
self.data
}
pub fn interlace(&self) -> InterlaceInfo {
self.interlace
}
}
/// PNG (2003) specifies two interlace modes, but reserves future extensions.
#[derive(Clone, Copy, Debug)]
pub enum InterlaceInfo {
/// the null method means no interlacing
Null,
/// Adam7 derives its name from doing 7 passes over the image, only decoding a subset of all pixels in each pass.
/// The following table shows pictorially what parts of each 8x8 area of the image is found in each pass:
///
/// 1 6 4 6 2 6 4 6
/// 7 7 7 7 7 7 7 7
/// 5 6 5 6 5 6 5 6
/// 7 7 7 7 7 7 7 7
/// 3 6 4 6 3 6 4 6
/// 7 7 7 7 7 7 7 7
/// 5 6 5 6 5 6 5 6
/// 7 7 7 7 7 7 7 7
Adam7 { pass: u8, line: u32, width: u32 },
}
/// A row of data without interlace information.
#[derive(Clone, Copy, Debug)]
pub struct Row<'data> {
data: &'data [u8],
}
impl<'data> Row<'data> {
pub fn data(&self) -> &'data [u8] {
self.data
}
}
impl<R: Read> Decoder<R> {
/// Create a new decoder configuration with default limits.
pub fn new(r: R) -> Decoder<R> {
Decoder::new_with_limits(r, Limits::default())
}
/// Create a new decoder configuration with custom limits.
pub fn new_with_limits(r: R, limits: Limits) -> Decoder<R> {
Decoder {
read_decoder: ReadDecoder {
reader: BufReader::with_capacity(CHUNCK_BUFFER_SIZE, r),
decoder: StreamingDecoder::new(),
at_eof: false,
},
transform: Transformations::IDENTITY,
limits,
}
}
/// Create a new decoder configuration with custom `DecodeOptions`.
pub fn new_with_options(r: R, decode_options: DecodeOptions) -> Decoder<R> {
Decoder {
read_decoder: ReadDecoder {
reader: BufReader::with_capacity(CHUNCK_BUFFER_SIZE, r),
decoder: StreamingDecoder::new_with_options(decode_options),
at_eof: false,
},
transform: Transformations::IDENTITY,
limits: Limits::default(),
}
}
/// Limit resource usage.
///
/// Note that your allocations, e.g. when reading into a pre-allocated buffer, are __NOT__
/// considered part of the limits. Nevertheless, required intermediate buffers such as for
/// singular lines is checked against the limit.
///
/// Note that this is a best-effort basis.
///
/// ```
/// use std::fs::File;
/// use png::{Decoder, Limits};
/// // This image is 32×32, 1bit per pixel. The reader buffers one row which requires 4 bytes.
/// let mut limits = Limits::default();
/// limits.bytes = 3;
/// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits);
/// assert!(decoder.read_info().is_err());
///
/// // This image is 32x32 pixels, so the decoder will allocate less than 10Kib
/// let mut limits = Limits::default();
/// limits.bytes = 10*1024;
/// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits);
/// assert!(decoder.read_info().is_ok());
/// ```
pub fn set_limits(&mut self, limits: Limits) {
self.limits = limits;
}
/// Read the PNG header and return the information contained within.
///
/// Most image metadata will not be read until `read_info` is called, so those fields will be
/// None or empty.
pub fn read_header_info(&mut self) -> Result<&Info, DecodingError> {
let mut buf = Vec::new();
while self.read_decoder.info().is_none() {
buf.clear();
if self.read_decoder.decode_next(&mut buf)?.is_none() {
return Err(DecodingError::Format(
FormatErrorInner::UnexpectedEof.into(),
));
}
}
Ok(self.read_decoder.info().unwrap())
}
/// Reads all meta data until the first IDAT chunk
pub fn read_info(mut self) -> Result<Reader<R>, DecodingError> {
self.read_header_info()?;
let mut reader = Reader {
decoder: self.read_decoder,
bpp: BytesPerPixel::One,
subframe: SubframeInfo::not_yet_init(),
fctl_read: 0,
next_frame: SubframeIdx::Initial,
prev: Vec::new(),
current: Vec::new(),
scan_start: 0,
transform: self.transform,
processed: Vec::new(),
limits: self.limits,
};
// Check if the decoding buffer of a single raw line has a valid size.
if reader.info().checked_raw_row_length().is_none() {
return Err(DecodingError::LimitsExceeded);
}
// Check if the output buffer has a valid size.
let (width, height) = reader.info().size();
let (color, depth) = reader.output_color_type();
let rowlen = color
.checked_raw_row_length(depth, width)
.ok_or(DecodingError::LimitsExceeded)?
- 1;
let height: usize =
std::convert::TryFrom::try_from(height).map_err(|_| DecodingError::LimitsExceeded)?;
if rowlen.checked_mul(height).is_none() {
return Err(DecodingError::LimitsExceeded);
}
reader.read_until_image_data()?;
Ok(reader)
}
/// Set the allowed and performed transformations.
///
/// A transformation is a pre-processing on the raw image data modifying content or encoding.
/// Many options have an impact on memory or CPU usage during decoding.
pub fn set_transformations(&mut self, transform: Transformations) {
self.transform = transform;
}
/// Set the decoder to ignore all text chunks while parsing.
///
/// eg.
/// ```
/// use std::fs::File;
/// use png::Decoder;
/// let mut decoder = Decoder::new(File::open("tests/pngsuite/basi0g01.png").unwrap());
/// decoder.set_ignore_text_chunk(true);
/// assert!(decoder.read_info().is_ok());
/// ```
pub fn set_ignore_text_chunk(&mut self, ignore_text_chunk: bool) {
self.read_decoder
.decoder
.set_ignore_text_chunk(ignore_text_chunk);
}
/// Set the decoder to ignore and not verify the Adler-32 checksum
/// and CRC code.
pub fn ignore_checksums(&mut self, ignore_checksums: bool) {
self.read_decoder
.decoder
.set_ignore_adler32(ignore_checksums);
self.read_decoder.decoder.set_ignore_crc(ignore_checksums);
}
}
struct ReadDecoder<R: Read> {
reader: BufReader<R>,
decoder: StreamingDecoder,
at_eof: bool,
}
impl<R: Read> ReadDecoder<R> {
/// Returns the next decoded chunk. If the chunk is an ImageData chunk, its contents are written
/// into image_data.
fn decode_next(&mut self, image_data: &mut Vec<u8>) -> Result<Option<Decoded>, DecodingError> {
while !self.at_eof {
let (consumed, result) = {
let buf = self.reader.fill_buf()?;
if buf.is_empty() {
return Err(DecodingError::Format(
FormatErrorInner::UnexpectedEof.into(),
));
}
self.decoder.update(buf, image_data)?
};
self.reader.consume(consumed);
match result {
Decoded::Nothing => (),
Decoded::ImageEnd => self.at_eof = true,
result => return Ok(Some(result)),
}
}
Ok(None)
}
fn finish_decoding(&mut self) -> Result<(), DecodingError> {
while !self.at_eof {
let buf = self.reader.fill_buf()?;
if buf.is_empty() {
return Err(DecodingError::Format(
FormatErrorInner::UnexpectedEof.into(),
));
}
let (consumed, event) = self.decoder.update(buf, &mut vec![])?;
self.reader.consume(consumed);
match event {
Decoded::Nothing => (),
Decoded::ImageEnd => self.at_eof = true,
// ignore more data
Decoded::ChunkComplete(_, _) | Decoded::ChunkBegin(_, _) | Decoded::ImageData => {}
Decoded::ImageDataFlushed => return Ok(()),
Decoded::PartialChunk(_) => {}
new => unreachable!("{:?}", new),
}
}
Err(DecodingError::Format(
FormatErrorInner::UnexpectedEof.into(),
))
}
fn info(&self) -> Option<&Info> {
self.decoder.info.as_ref()
}
}
/// PNG reader (mostly high-level interface)
///
/// Provides a high level that iterates over lines or whole images.
pub struct Reader<R: Read> {
decoder: ReadDecoder<R>,
bpp: BytesPerPixel,
subframe: SubframeInfo,
/// Number of frame control chunks read.
/// By the APNG specification the total number must equal the count specified in the animation
/// control chunk. The IDAT image _may_ have such a chunk applying to it.
fctl_read: u32,
next_frame: SubframeIdx,
/// Previous raw line
prev: Vec<u8>,
/// Current raw line
current: Vec<u8>,
/// Start index of the current scan line.
scan_start: usize,
/// Output transformations
transform: Transformations,
/// Processed line
processed: Vec<u8>,
/// How resources we can spend (for example, on allocation).
limits: Limits,
}
/// The subframe specific information.
///
/// In APNG the frames are constructed by combining previous frame and a new subframe (through a
/// combination of `dispose_op` and `overlay_op`). These sub frames specify individual dimension
/// information and reuse the global interlace options. This struct encapsulates the state of where
/// in a particular IDAT-frame or subframe we are.
struct SubframeInfo {
width: u32,
height: u32,
rowlen: usize,
interlace: InterlaceIter,
consumed_and_flushed: bool,
}
#[derive(Clone)]
enum InterlaceIter {
None(Range<u32>),
Adam7(utils::Adam7Iterator),
}
/// Denote a frame as given by sequence numbers.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum SubframeIdx {
/// The initial frame in an IDAT chunk without fcTL chunk applying to it.
/// Note that this variant precedes `Some` as IDAT frames precede fdAT frames and all fdAT
/// frames must have a fcTL applying to it.
Initial,
/// An IDAT frame with fcTL or an fdAT frame.
Some(u32),
/// The past-the-end index.
End,
}
impl<R: Read> Reader<R> {
/// Reads all meta data until the next frame data starts.
/// Requires IHDR before the IDAT and fcTL before fdAT.
fn read_until_image_data(&mut self) -> Result<(), DecodingError> {
loop {
// This is somewhat ugly. The API requires us to pass a buffer to decode_next but we
// know that we will stop before reading any image data from the stream. Thus pass an
// empty buffer and assert that remains empty.
let mut buf = Vec::new();
let state = self.decoder.decode_next(&mut buf)?;
assert!(buf.is_empty());
match state {
Some(Decoded::ChunkBegin(_, chunk::IDAT))
| Some(Decoded::ChunkBegin(_, chunk::fdAT)) => break,
Some(Decoded::FrameControl(_)) => {
self.subframe = SubframeInfo::new(self.info());
// The next frame is the one to which this chunk applies.
self.next_frame = SubframeIdx::Some(self.fctl_read);
// TODO: what about overflow here? That would imply there are more fctl chunks
// than can be specified in the animation control but also that we have read
// several gigabytes of data.
self.fctl_read += 1;
}
None => {
return Err(DecodingError::Format(
FormatErrorInner::MissingImageData.into(),
))
}
// Ignore all other chunk events. Any other chunk may be between IDAT chunks, fdAT
// chunks and their control chunks.
_ => {}
}
}
let info = self
.decoder
.info()
.ok_or(DecodingError::Format(FormatErrorInner::MissingIhdr.into()))?;
self.bpp = info.bpp_in_prediction();
self.subframe = SubframeInfo::new(info);
// Allocate output buffer.
let buflen = self
.line_size(self.subframe.width)
.filter(|&x| x <= self.limits.bytes)
.ok_or(DecodingError::LimitsExceeded)?;
self.processed.resize(buflen, 0u8);
self.prev.clear();
self.prev.resize(self.subframe.rowlen, 0);
Ok(())
}
/// Get information on the image.
///
/// The structure will change as new frames of an animated image are decoded.
pub fn info(&self) -> &Info {
self.decoder.info().unwrap()
}
/// Decodes the next frame into `buf`.
///
/// Note that this decodes raw subframes that need to be mixed according to blend-op and
/// dispose-op by the caller.
///
/// The caller must always provide a buffer large enough to hold a complete frame (the APNG
/// specification restricts subframes to the dimensions given in the image header). The region
/// that has been written be checked afterwards by calling `info` after a successful call and
/// inspecting the `frame_control` data. This requirement may be lifted in a later version of
/// `png`.
///
/// Output lines will be written in row-major, packed matrix with width and height of the read
/// frame (or subframe), all samples are in big endian byte order where this matters.
pub fn next_frame(&mut self, buf: &mut [u8]) -> Result<OutputInfo, DecodingError> {
let subframe_idx = match self.decoder.info().unwrap().frame_control() {
None => SubframeIdx::Initial,
Some(_) => SubframeIdx::Some(self.fctl_read - 1),
};
if self.next_frame == SubframeIdx::End {
return Err(DecodingError::Parameter(
ParameterErrorKind::PolledAfterEndOfImage.into(),
));
} else if self.next_frame != subframe_idx {
// Advance until we've read the info / fcTL for this frame.
self.read_until_image_data()?;
}
if buf.len() < self.output_buffer_size() {
return Err(DecodingError::Parameter(
ParameterErrorKind::ImageBufferSize {
expected: buf.len(),
actual: self.output_buffer_size(),
}
.into(),
));
}
let (color_type, bit_depth) = self.output_color_type();
let output_info = OutputInfo {
width: self.subframe.width,
height: self.subframe.height,
color_type,
bit_depth,
line_size: self.output_line_size(self.subframe.width),
};
self.current.clear();
self.scan_start = 0;
let width = self.info().width;
if self.info().interlaced {
while let Some(InterlacedRow {
data: row,
interlace,
..
}) = self.next_interlaced_row()?
{
let (line, pass) = match interlace {
InterlaceInfo::Adam7 { line, pass, .. } => (line, pass),
InterlaceInfo::Null => unreachable!("expected interlace information"),
};
let samples = color_type.samples() as u8;
utils::expand_pass(buf, width, row, pass, line, samples * (bit_depth as u8));
}
} else {
let mut len = 0;
while let Some(Row { data: row, .. }) = self.next_row()? {
len += (&mut buf[len..]).write(row)?;
}
}
// Advance over the rest of data for this (sub-)frame.
if !self.subframe.consumed_and_flushed {
self.decoder.finish_decoding()?;
}
// Advance our state to expect the next frame.
let past_end_subframe = match self.info().animation_control() {
// a non-APNG has no subframes
None => 0,
// otherwise the count is the past-the-end index. It can not be 0 per spec.
Some(ac) => ac.num_frames,
};
self.next_frame = match self.next_frame {
SubframeIdx::End => unreachable!("Next frame called when already at image end"),
// Reached the end of non-animated image.
SubframeIdx::Initial if past_end_subframe == 0 => SubframeIdx::End,
// An animated image, expecting first subframe.
SubframeIdx::Initial => SubframeIdx::Some(0),
// This was the last subframe, slightly fuzzy condition in case of programmer error.
SubframeIdx::Some(idx) if past_end_subframe <= idx + 1 => SubframeIdx::End,
// Expecting next subframe.
SubframeIdx::Some(idx) => SubframeIdx::Some(idx + 1),
};
Ok(output_info)
}
/// Returns the next processed row of the image
pub fn next_row(&mut self) -> Result<Option<Row>, DecodingError> {
self.next_interlaced_row()
.map(|v| v.map(|v| Row { data: v.data }))
}
/// Returns the next processed row of the image
pub fn next_interlaced_row(&mut self) -> Result<Option<InterlacedRow>, DecodingError> {
self.next_interlaced_row_impl()
}
/// Fetch the next interlaced row and filter it according to our own transformations.
fn next_interlaced_row_impl(&mut self) -> Result<Option<InterlacedRow>, DecodingError> {
use crate::common::ColorType::*;
let transform = self.transform;
let (rowlen, interlace) = match self.next_pass() {
Some((rowlen, interlace)) => (rowlen, interlace),
None => return Ok(None),
};
if transform == Transformations::IDENTITY {
return Ok(Some(InterlacedRow {
data: self.next_raw_interlaced_row(rowlen)?,
interlace,
}));
}
// swap buffer to circumvent borrow issues
let mut buffer = mem::take(&mut self.processed);
(&mut buffer[..]).write_all(self.next_raw_interlaced_row(rowlen)?)?;
self.processed = buffer;
let (color_type, bit_depth, trns) = {
let info = self.info();
(info.color_type, info.bit_depth as u8, info.trns.is_some())
};
let output_buffer = if let InterlaceInfo::Adam7 { width, .. } = interlace {
let width = self
.line_size(width)
.expect("Adam7 interlaced rows are shorter than the buffer.");
&mut self.processed[..width]
} else {
&mut *self.processed
};
let mut len = output_buffer.len();
if transform.contains(Transformations::EXPAND) {
match color_type {
Indexed => expand_paletted(output_buffer, self.decoder.info().unwrap())?,
Grayscale | GrayscaleAlpha if bit_depth < 8 => {
expand_gray_u8(output_buffer, self.decoder.info().unwrap())
}
Grayscale | Rgb if trns => {
let channels = color_type.samples();
let trns = self.decoder.info().unwrap().trns.as_ref().unwrap();
if bit_depth == 8 {
utils::expand_trns_line(output_buffer, trns, channels);
} else {
utils::expand_trns_line16(output_buffer, trns, channels);
}
}
_ => (),
}
}
if bit_depth == 16 && transform.intersects(Transformations::STRIP_16) {
len /= 2;
for i in 0..len {
output_buffer[i] = output_buffer[2 * i];
}
}
Ok(Some(InterlacedRow {
data: &output_buffer[..len],
interlace,
}))
}
/// Returns the color type and the number of bits per sample
/// of the data returned by `Reader::next_row` and Reader::frames`.
pub fn output_color_type(&self) -> (ColorType, BitDepth) {
use crate::common::ColorType::*;
let t = self.transform;
let info = self.info();
if t == Transformations::IDENTITY {
(info.color_type, info.bit_depth)
} else {
let bits = match info.bit_depth as u8 {
16 if t.intersects(Transformations::STRIP_16) => 8,
n if n < 8 && t.contains(Transformations::EXPAND) => 8,
n => n,
};
let color_type = if t.contains(Transformations::EXPAND) {
let has_trns = info.trns.is_some();
match info.color_type {
Grayscale if has_trns => GrayscaleAlpha,
Rgb if has_trns => Rgba,
Indexed if has_trns => Rgba,
Indexed => Rgb,
ct => ct,
}
} else {
info.color_type
};
(color_type, BitDepth::from_u8(bits).unwrap())
}
}
/// Returns the number of bytes required to hold a deinterlaced image frame
/// that is decoded using the given input transformations.
pub fn output_buffer_size(&self) -> usize {
let (width, height) = self.info().size();
let size = self.output_line_size(width);
size * height as usize
}
/// Returns the number of bytes required to hold a deinterlaced row.
pub fn output_line_size(&self, width: u32) -> usize {
let (color, depth) = self.output_color_type();
color.raw_row_length_from_width(depth, width) - 1
}
/// Returns the number of bytes required to decode a deinterlaced row.
fn line_size(&self, width: u32) -> Option<usize> {
use crate::common::ColorType::*;
let t = self.transform;
let info = self.info();
let trns = info.trns.is_some();
let expanded = if info.bit_depth == BitDepth::Sixteen {
BitDepth::Sixteen
} else {
BitDepth::Eight
};
// The color type and depth representing the decoded line
// TODO 16 bit
let (color, depth) = match info.color_type {
Indexed if trns && t.contains(Transformations::EXPAND) => (Rgba, expanded),
Indexed if t.contains(Transformations::EXPAND) => (Rgb, expanded),
Rgb if trns && t.contains(Transformations::EXPAND) => (Rgba, expanded),
Grayscale if trns && t.contains(Transformations::EXPAND) => (GrayscaleAlpha, expanded),
Grayscale if t.contains(Transformations::EXPAND) => (Grayscale, expanded),
GrayscaleAlpha if t.contains(Transformations::EXPAND) => (GrayscaleAlpha, expanded),
other => (other, info.bit_depth),
};
// Without the filter method byte
color.checked_raw_row_length(depth, width).map(|n| n - 1)
}
fn next_pass(&mut self) -> Option<(usize, InterlaceInfo)> {
match self.subframe.interlace {
InterlaceIter::Adam7(ref mut adam7) => {
let last_pass = adam7.current_pass();
let (pass, line, width) = adam7.next()?;
let rowlen = self.info().raw_row_length_from_width(width);
if last_pass != pass {
self.prev.clear();
self.prev.resize(rowlen, 0u8);
}
Some((rowlen, InterlaceInfo::Adam7 { pass, line, width }))
}
InterlaceIter::None(ref mut height) => {
let _ = height.next()?;
Some((self.subframe.rowlen, InterlaceInfo::Null))
}
}
}
/// Returns the next raw scanline of the image interlace pass.
/// The scanline is filtered against the previous scanline according to the specification.
fn next_raw_interlaced_row(&mut self, rowlen: usize) -> Result<&[u8], DecodingError> {
// Read image data until we have at least one full row (but possibly more than one).
while self.current.len() - self.scan_start < rowlen {
if self.subframe.consumed_and_flushed {
return Err(DecodingError::Format(
FormatErrorInner::NoMoreImageData.into(),
));
}
// Clear the current buffer before appending more data.
if self.scan_start > 0 {
self.current.drain(..self.scan_start).for_each(drop);
self.scan_start = 0;
}
match self.decoder.decode_next(&mut self.current)? {
Some(Decoded::ImageData) => {}
Some(Decoded::ImageDataFlushed) => {
self.subframe.consumed_and_flushed = true;
}
None => {
return Err(DecodingError::Format(
if self.current.is_empty() {
FormatErrorInner::NoMoreImageData
} else {
FormatErrorInner::UnexpectedEndOfChunk
}
.into(),
));
}
_ => (),
}
}
// Get a reference to the current row and point scan_start to the next one.
let row = &mut self.current[self.scan_start..];
self.scan_start += rowlen;
// Unfilter the row.
let filter = FilterType::from_u8(row[0]).ok_or(DecodingError::Format(
FormatErrorInner::UnknownFilterMethod(row[0]).into(),
))?;
unfilter(filter, self.bpp, &self.prev[1..rowlen], &mut row[1..rowlen]);
// Save the current row for the next pass.
self.prev[..rowlen].copy_from_slice(&row[..rowlen]);
Ok(&self.prev[1..rowlen])
}
}
impl SubframeInfo {
fn not_yet_init() -> Self {
SubframeInfo {
width: 0,
height: 0,
rowlen: 0,
interlace: InterlaceIter::None(0..0),
consumed_and_flushed: false,
}
}
fn new(info: &Info) -> Self {
// The apng fctnl overrides width and height.
// All other data is set by the main info struct.
let (width, height) = if let Some(fc) = info.frame_control {
(fc.width, fc.height)
} else {
(info.width, info.height)
};
let interlace = if info.interlaced {
InterlaceIter::Adam7(utils::Adam7Iterator::new(width, height))
} else {
InterlaceIter::None(0..height)
};
SubframeInfo {
width,
height,
rowlen: info.raw_row_length_from_width(width),
interlace,
consumed_and_flushed: false,
}
}
}
fn expand_paletted(buffer: &mut [u8], info: &Info) -> Result<(), DecodingError> {
if let Some(palette) = info.palette.as_ref() {
if let BitDepth::Sixteen = info.bit_depth {
// This should have been caught earlier but let's check again. Can't hurt.
Err(DecodingError::Format(
FormatErrorInner::InvalidColorBitDepth {
color_type: ColorType::Indexed,
bit_depth: BitDepth::Sixteen,
}
.into(),
))
} else {
let black = [0, 0, 0];
if let Some(ref trns) = info.trns {
// > The tRNS chunk shall not contain more alpha values than there are palette
// entries, but a tRNS chunk may contain fewer values than there are palette
// entries. In this case, the alpha value for all remaining palette entries is
// assumed to be 255.
//
// It seems, accepted reading is to fully *ignore* an invalid tRNS as if it were
// completely empty / all pixels are non-transparent.
let trns = if trns.len() <= palette.len() / 3 {
trns.as_ref()
} else {
&[]
};
utils::unpack_bits(buffer, 4, info.bit_depth as u8, |i, chunk| {
let (rgb, a) = (
palette
.get(3 * i as usize..3 * i as usize + 3)
.unwrap_or(&black),
*trns.get(i as usize).unwrap_or(&0xFF),
);
chunk[0] = rgb[0];
chunk[1] = rgb[1];
chunk[2] = rgb[2];
chunk[3] = a;
});
} else {
utils::unpack_bits(buffer, 3, info.bit_depth as u8, |i, chunk| {
let rgb = palette
.get(3 * i as usize..3 * i as usize + 3)
.unwrap_or(&black);
chunk[0] = rgb[0];
chunk[1] = rgb[1];
chunk[2] = rgb[2];
})
}
Ok(())
}
} else {
Err(DecodingError::Format(
FormatErrorInner::PaletteRequired.into(),
))
}
}
fn expand_gray_u8(buffer: &mut [u8], info: &Info) {
let rescale = true;
let scaling_factor = if rescale {
(255) / ((1u16 << info.bit_depth as u8) - 1) as u8
} else {
1
};
if let Some(ref trns) = info.trns {
utils::unpack_bits(buffer, 2, info.bit_depth as u8, |pixel, chunk| {
if pixel == trns[0] {
chunk[1] = 0
} else {
chunk[1] = 0xFF
}
chunk[0] = pixel * scaling_factor
})
} else {
utils::unpack_bits(buffer, 1, info.bit_depth as u8, |val, chunk| {
chunk[0] = val * scaling_factor
})
}
}
#[cfg(test)]
mod tests {
use super::Decoder;
use std::io::{BufRead, Read, Result};
use std::mem::discriminant;
/// A reader that reads at most `n` bytes.
struct SmalBuf<R: BufRead> {
inner: R,
cap: usize,
}
impl<R: BufRead> SmalBuf<R> {
fn new(inner: R, cap: usize) -> Self {
SmalBuf { inner, cap }
}
}
impl<R: BufRead> Read for SmalBuf<R> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let len = buf.len().min(self.cap);
self.inner.read(&mut buf[..len])
}
}
impl<R: BufRead> BufRead for SmalBuf<R> {
fn fill_buf(&mut self) -> Result<&[u8]> {
let buf = self.inner.fill_buf()?;
let len = buf.len().min(self.cap);
Ok(&buf[..len])
}
fn consume(&mut self, amt: usize) {
assert!(amt <= self.cap);
self.inner.consume(amt)
}
}
#[test]
fn no_data_dup_on_finish() {
const IMG: &[u8] = include_bytes!(concat!(
env!("CARGO_MANIFEST_DIR"),
"/tests/bugfixes/x_issue#214.png"
));
let mut normal = Decoder::new(IMG).read_info().unwrap();
let mut buffer = vec![0; normal.output_buffer_size()];
let normal = normal.next_frame(&mut buffer).unwrap_err();
let smal = Decoder::new(SmalBuf::new(IMG, 1))
.read_info()
.unwrap()
.next_frame(&mut buffer)
.unwrap_err();
assert_eq!(discriminant(&normal), discriminant(&smal));
}
}