1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
use std::cell::RefCell;
use std::collections::HashMap;
use std::panic::AssertUnwindSafe;
use std::sync::Arc;
#[cfg(feature = "perf-literal")]
use aho_corasick::{AhoCorasick, AhoCorasickBuilder, MatchKind};
use regex_syntax::hir::literal::Literals;
use regex_syntax::hir::Hir;
use regex_syntax::ParserBuilder;
use crate::backtrack;
use crate::compile::Compiler;
#[cfg(feature = "perf-dfa")]
use crate::dfa;
use crate::error::Error;
use crate::input::{ByteInput, CharInput};
use crate::literal::LiteralSearcher;
use crate::pikevm;
use crate::pool::{Pool, PoolGuard};
use crate::prog::Program;
use crate::re_builder::RegexOptions;
use crate::re_bytes;
use crate::re_set;
use crate::re_trait::{Locations, RegularExpression, Slot};
use crate::re_unicode;
use crate::utf8::next_utf8;
/// `Exec` manages the execution of a regular expression.
///
/// In particular, this manages the various compiled forms of a single regular
/// expression and the choice of which matching engine to use to execute a
/// regular expression.
#[derive(Debug)]
pub struct Exec {
/// All read only state.
ro: Arc<ExecReadOnly>,
/// A pool of reusable values for the various matching engines.
///
/// Note that boxing this value is not strictly necessary, but it is an
/// easy way to ensure that T does not bloat the stack sized used by a pool
/// in the case where T is big. And this turns out to be the case at the
/// time of writing for regex's use of this pool. At the time of writing,
/// the size of a Regex on the stack is 856 bytes. Boxing this value
/// reduces that size to 16 bytes.
pool: Box<Pool<ProgramCache>>,
}
/// `ExecNoSync` is like `Exec`, except it embeds a reference to a cache. This
/// means it is no longer Sync, but we can now avoid the overhead of
/// synchronization to fetch the cache.
#[derive(Debug)]
pub struct ExecNoSync<'c> {
/// All read only state.
ro: &'c Arc<ExecReadOnly>,
/// Caches for the various matching engines.
cache: PoolGuard<'c, ProgramCache>,
}
/// `ExecNoSyncStr` is like `ExecNoSync`, but matches on &str instead of &[u8].
#[derive(Debug)]
pub struct ExecNoSyncStr<'c>(ExecNoSync<'c>);
/// `ExecReadOnly` comprises all read only state for a regex. Namely, all such
/// state is determined at compile time and never changes during search.
#[derive(Debug)]
struct ExecReadOnly {
/// The original regular expressions given by the caller to compile.
res: Vec<String>,
/// A compiled program that is used in the NFA simulation and backtracking.
/// It can be byte-based or Unicode codepoint based.
///
/// N.B. It is not possibly to make this byte-based from the public API.
/// It is only used for testing byte based programs in the NFA simulations.
nfa: Program,
/// A compiled byte based program for DFA execution. This is only used
/// if a DFA can be executed. (Currently, only word boundary assertions are
/// not supported.) Note that this program contains an embedded `.*?`
/// preceding the first capture group, unless the regex is anchored at the
/// beginning.
dfa: Program,
/// The same as above, except the program is reversed (and there is no
/// preceding `.*?`). This is used by the DFA to find the starting location
/// of matches.
dfa_reverse: Program,
/// A set of suffix literals extracted from the regex.
///
/// Prefix literals are stored on the `Program`, since they are used inside
/// the matching engines.
suffixes: LiteralSearcher,
/// An Aho-Corasick automaton with leftmost-first match semantics.
///
/// This is only set when the entire regex is a simple unanchored
/// alternation of literals. We could probably use it more circumstances,
/// but this is already hacky enough in this architecture.
///
/// N.B. We use u32 as a state ID representation under the assumption that
/// if we were to exhaust the ID space, we probably would have long
/// surpassed the compilation size limit.
#[cfg(feature = "perf-literal")]
ac: Option<AhoCorasick<u32>>,
/// match_type encodes as much upfront knowledge about how we're going to
/// execute a search as possible.
match_type: MatchType,
}
/// Facilitates the construction of an executor by exposing various knobs
/// to control how a regex is executed and what kinds of resources it's
/// permitted to use.
// `ExecBuilder` is only public via the `internal` module, so avoid deriving
// `Debug`.
#[allow(missing_debug_implementations)]
pub struct ExecBuilder {
options: RegexOptions,
match_type: Option<MatchType>,
bytes: bool,
only_utf8: bool,
}
/// Parsed represents a set of parsed regular expressions and their detected
/// literals.
struct Parsed {
exprs: Vec<Hir>,
prefixes: Literals,
suffixes: Literals,
bytes: bool,
}
impl ExecBuilder {
/// Create a regex execution builder.
///
/// This uses default settings for everything except the regex itself,
/// which must be provided. Further knobs can be set by calling methods,
/// and then finally, `build` to actually create the executor.
pub fn new(re: &str) -> Self {
Self::new_many(&[re])
}
/// Like new, but compiles the union of the given regular expressions.
///
/// Note that when compiling 2 or more regular expressions, capture groups
/// are completely unsupported. (This means both `find` and `captures`
/// won't work.)
pub fn new_many<I, S>(res: I) -> Self
where
S: AsRef<str>,
I: IntoIterator<Item = S>,
{
let mut opts = RegexOptions::default();
opts.pats = res.into_iter().map(|s| s.as_ref().to_owned()).collect();
Self::new_options(opts)
}
/// Create a regex execution builder.
pub fn new_options(opts: RegexOptions) -> Self {
ExecBuilder {
options: opts,
match_type: None,
bytes: false,
only_utf8: true,
}
}
/// Set the matching engine to be automatically determined.
///
/// This is the default state and will apply whatever optimizations are
/// possible, such as running a DFA.
///
/// This overrides whatever was previously set via the `nfa` or
/// `bounded_backtracking` methods.
pub fn automatic(mut self) -> Self {
self.match_type = None;
self
}
/// Sets the matching engine to use the NFA algorithm no matter what
/// optimizations are possible.
///
/// This overrides whatever was previously set via the `automatic` or
/// `bounded_backtracking` methods.
pub fn nfa(mut self) -> Self {
self.match_type = Some(MatchType::Nfa(MatchNfaType::PikeVM));
self
}
/// Sets the matching engine to use a bounded backtracking engine no
/// matter what optimizations are possible.
///
/// One must use this with care, since the bounded backtracking engine
/// uses memory proportion to `len(regex) * len(text)`.
///
/// This overrides whatever was previously set via the `automatic` or
/// `nfa` methods.
pub fn bounded_backtracking(mut self) -> Self {
self.match_type = Some(MatchType::Nfa(MatchNfaType::Backtrack));
self
}
/// Compiles byte based programs for use with the NFA matching engines.
///
/// By default, the NFA engines match on Unicode scalar values. They can
/// be made to use byte based programs instead. In general, the byte based
/// programs are slower because of a less efficient encoding of character
/// classes.
///
/// Note that this does not impact DFA matching engines, which always
/// execute on bytes.
pub fn bytes(mut self, yes: bool) -> Self {
self.bytes = yes;
self
}
/// When disabled, the program compiled may match arbitrary bytes.
///
/// When enabled (the default), all compiled programs exclusively match
/// valid UTF-8 bytes.
pub fn only_utf8(mut self, yes: bool) -> Self {
self.only_utf8 = yes;
self
}
/// Set the Unicode flag.
pub fn unicode(mut self, yes: bool) -> Self {
self.options.unicode = yes;
self
}
/// Parse the current set of patterns into their AST and extract literals.
fn parse(&self) -> Result<Parsed, Error> {
let mut exprs = Vec::with_capacity(self.options.pats.len());
let mut prefixes = Some(Literals::empty());
let mut suffixes = Some(Literals::empty());
let mut bytes = false;
let is_set = self.options.pats.len() > 1;
// If we're compiling a regex set and that set has any anchored
// expressions, then disable all literal optimizations.
for pat in &self.options.pats {
let mut parser = ParserBuilder::new()
.octal(self.options.octal)
.case_insensitive(self.options.case_insensitive)
.multi_line(self.options.multi_line)
.dot_matches_new_line(self.options.dot_matches_new_line)
.swap_greed(self.options.swap_greed)
.ignore_whitespace(self.options.ignore_whitespace)
.unicode(self.options.unicode)
.allow_invalid_utf8(!self.only_utf8)
.nest_limit(self.options.nest_limit)
.build();
let expr =
parser.parse(pat).map_err(|e| Error::Syntax(e.to_string()))?;
bytes = bytes || !expr.is_always_utf8();
if cfg!(feature = "perf-literal") {
if !expr.is_anchored_start() && expr.is_any_anchored_start() {
// Partial anchors unfortunately make it hard to use
// prefixes, so disable them.
prefixes = None;
} else if is_set && expr.is_anchored_start() {
// Regex sets with anchors do not go well with literal
// optimizations.
prefixes = None;
}
prefixes = prefixes.and_then(|mut prefixes| {
if !prefixes.union_prefixes(&expr) {
None
} else {
Some(prefixes)
}
});
if !expr.is_anchored_end() && expr.is_any_anchored_end() {
// Partial anchors unfortunately make it hard to use
// suffixes, so disable them.
suffixes = None;
} else if is_set && expr.is_anchored_end() {
// Regex sets with anchors do not go well with literal
// optimizations.
suffixes = None;
}
suffixes = suffixes.and_then(|mut suffixes| {
if !suffixes.union_suffixes(&expr) {
None
} else {
Some(suffixes)
}
});
}
exprs.push(expr);
}
Ok(Parsed {
exprs,
prefixes: prefixes.unwrap_or_else(Literals::empty),
suffixes: suffixes.unwrap_or_else(Literals::empty),
bytes,
})
}
/// Build an executor that can run a regular expression.
pub fn build(self) -> Result<Exec, Error> {
// Special case when we have no patterns to compile.
// This can happen when compiling a regex set.
if self.options.pats.is_empty() {
let ro = Arc::new(ExecReadOnly {
res: vec![],
nfa: Program::new(),
dfa: Program::new(),
dfa_reverse: Program::new(),
suffixes: LiteralSearcher::empty(),
#[cfg(feature = "perf-literal")]
ac: None,
match_type: MatchType::Nothing,
});
let pool = ExecReadOnly::new_pool(&ro);
return Ok(Exec { ro, pool });
}
let parsed = self.parse()?;
let mut nfa = Compiler::new()
.size_limit(self.options.size_limit)
.bytes(self.bytes || parsed.bytes)
.only_utf8(self.only_utf8)
.compile(&parsed.exprs)?;
let mut dfa = Compiler::new()
.size_limit(self.options.size_limit)
.dfa(true)
.only_utf8(self.only_utf8)
.compile(&parsed.exprs)?;
let mut dfa_reverse = Compiler::new()
.size_limit(self.options.size_limit)
.dfa(true)
.only_utf8(self.only_utf8)
.reverse(true)
.compile(&parsed.exprs)?;
#[cfg(feature = "perf-literal")]
let ac = self.build_aho_corasick(&parsed);
nfa.prefixes = LiteralSearcher::prefixes(parsed.prefixes);
dfa.prefixes = nfa.prefixes.clone();
dfa.dfa_size_limit = self.options.dfa_size_limit;
dfa_reverse.dfa_size_limit = self.options.dfa_size_limit;
let mut ro = ExecReadOnly {
res: self.options.pats,
nfa,
dfa,
dfa_reverse,
suffixes: LiteralSearcher::suffixes(parsed.suffixes),
#[cfg(feature = "perf-literal")]
ac,
match_type: MatchType::Nothing,
};
ro.match_type = ro.choose_match_type(self.match_type);
let ro = Arc::new(ro);
let pool = ExecReadOnly::new_pool(&ro);
Ok(Exec { ro, pool })
}
#[cfg(feature = "perf-literal")]
fn build_aho_corasick(&self, parsed: &Parsed) -> Option<AhoCorasick<u32>> {
if parsed.exprs.len() != 1 {
return None;
}
let lits = match alternation_literals(&parsed.exprs[0]) {
None => return None,
Some(lits) => lits,
};
// If we have a small number of literals, then let Teddy handle
// things (see literal/mod.rs).
if lits.len() <= 32 {
return None;
}
Some(
AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostFirst)
.auto_configure(&lits)
.build_with_size::<u32, _, _>(&lits)
// This should never happen because we'd long exceed the
// compilation limit for regexes first.
.expect("AC automaton too big"),
)
}
}
impl<'c> RegularExpression for ExecNoSyncStr<'c> {
type Text = str;
fn slots_len(&self) -> usize {
self.0.slots_len()
}
fn next_after_empty(&self, text: &str, i: usize) -> usize {
next_utf8(text.as_bytes(), i)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn shortest_match_at(&self, text: &str, start: usize) -> Option<usize> {
self.0.shortest_match_at(text.as_bytes(), start)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_match_at(&self, text: &str, start: usize) -> bool {
self.0.is_match_at(text.as_bytes(), start)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_at(&self, text: &str, start: usize) -> Option<(usize, usize)> {
self.0.find_at(text.as_bytes(), start)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn captures_read_at(
&self,
locs: &mut Locations,
text: &str,
start: usize,
) -> Option<(usize, usize)> {
self.0.captures_read_at(locs, text.as_bytes(), start)
}
}
impl<'c> RegularExpression for ExecNoSync<'c> {
type Text = [u8];
/// Returns the number of capture slots in the regular expression. (There
/// are two slots for every capture group, corresponding to possibly empty
/// start and end locations of the capture.)
fn slots_len(&self) -> usize {
self.ro.nfa.captures.len() * 2
}
fn next_after_empty(&self, _text: &[u8], i: usize) -> usize {
i + 1
}
/// Returns the end of a match location, possibly occurring before the
/// end location of the correct leftmost-first match.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn shortest_match_at(&self, text: &[u8], start: usize) -> Option<usize> {
if !self.is_anchor_end_match(text) {
return None;
}
match self.ro.match_type {
#[cfg(feature = "perf-literal")]
MatchType::Literal(ty) => {
self.find_literals(ty, text, start).map(|(_, e)| e)
}
#[cfg(feature = "perf-dfa")]
MatchType::Dfa | MatchType::DfaMany => {
match self.shortest_dfa(text, start) {
dfa::Result::Match(end) => Some(end),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.shortest_nfa(text, start),
}
}
#[cfg(feature = "perf-dfa")]
MatchType::DfaAnchoredReverse => {
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache.value(),
true,
&text[start..],
text.len() - start,
) {
dfa::Result::Match(_) => Some(text.len()),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.shortest_nfa(text, start),
}
}
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
MatchType::DfaSuffix => {
match self.shortest_dfa_reverse_suffix(text, start) {
dfa::Result::Match(e) => Some(e),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.shortest_nfa(text, start),
}
}
MatchType::Nfa(ty) => self.shortest_nfa_type(ty, text, start),
MatchType::Nothing => None,
}
}
/// Returns true if and only if the regex matches text.
///
/// For single regular expressions, this is equivalent to calling
/// shortest_match(...).is_some().
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_match_at(&self, text: &[u8], start: usize) -> bool {
if !self.is_anchor_end_match(text) {
return false;
}
// We need to do this dance because shortest_match relies on the NFA
// filling in captures[1], but a RegexSet has no captures. In other
// words, a RegexSet can't (currently) use shortest_match. ---AG
match self.ro.match_type {
#[cfg(feature = "perf-literal")]
MatchType::Literal(ty) => {
self.find_literals(ty, text, start).is_some()
}
#[cfg(feature = "perf-dfa")]
MatchType::Dfa | MatchType::DfaMany => {
match self.shortest_dfa(text, start) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.match_nfa(text, start),
}
}
#[cfg(feature = "perf-dfa")]
MatchType::DfaAnchoredReverse => {
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache.value(),
true,
&text[start..],
text.len() - start,
) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.match_nfa(text, start),
}
}
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
MatchType::DfaSuffix => {
match self.shortest_dfa_reverse_suffix(text, start) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.match_nfa(text, start),
}
}
MatchType::Nfa(ty) => self.match_nfa_type(ty, text, start),
MatchType::Nothing => false,
}
}
/// Finds the start and end location of the leftmost-first match, starting
/// at the given location.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_at(&self, text: &[u8], start: usize) -> Option<(usize, usize)> {
if !self.is_anchor_end_match(text) {
return None;
}
match self.ro.match_type {
#[cfg(feature = "perf-literal")]
MatchType::Literal(ty) => self.find_literals(ty, text, start),
#[cfg(feature = "perf-dfa")]
MatchType::Dfa => match self.find_dfa_forward(text, start) {
dfa::Result::Match((s, e)) => Some((s, e)),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.find_nfa(MatchNfaType::Auto, text, start)
}
},
#[cfg(feature = "perf-dfa")]
MatchType::DfaAnchoredReverse => {
match self.find_dfa_anchored_reverse(text, start) {
dfa::Result::Match((s, e)) => Some((s, e)),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.find_nfa(MatchNfaType::Auto, text, start)
}
}
}
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
MatchType::DfaSuffix => {
match self.find_dfa_reverse_suffix(text, start) {
dfa::Result::Match((s, e)) => Some((s, e)),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.find_nfa(MatchNfaType::Auto, text, start)
}
}
}
MatchType::Nfa(ty) => self.find_nfa(ty, text, start),
MatchType::Nothing => None,
#[cfg(feature = "perf-dfa")]
MatchType::DfaMany => {
unreachable!("BUG: RegexSet cannot be used with find")
}
}
}
/// Finds the start and end location of the leftmost-first match and also
/// fills in all matching capture groups.
///
/// The number of capture slots given should be equal to the total number
/// of capture slots in the compiled program.
///
/// Note that the first two slots always correspond to the start and end
/// locations of the overall match.
fn captures_read_at(
&self,
locs: &mut Locations,
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
let slots = locs.as_slots();
for slot in slots.iter_mut() {
*slot = None;
}
// If the caller unnecessarily uses this, then we try to save them
// from themselves.
match slots.len() {
0 => return self.find_at(text, start),
2 => {
return self.find_at(text, start).map(|(s, e)| {
slots[0] = Some(s);
slots[1] = Some(e);
(s, e)
});
}
_ => {} // fallthrough
}
if !self.is_anchor_end_match(text) {
return None;
}
match self.ro.match_type {
#[cfg(feature = "perf-literal")]
MatchType::Literal(ty) => {
self.find_literals(ty, text, start).and_then(|(s, e)| {
self.captures_nfa_type(
MatchNfaType::Auto,
slots,
text,
s,
e,
)
})
}
#[cfg(feature = "perf-dfa")]
MatchType::Dfa => {
if self.ro.nfa.is_anchored_start {
self.captures_nfa(slots, text, start)
} else {
match self.find_dfa_forward(text, start) {
dfa::Result::Match((s, e)) => self.captures_nfa_type(
MatchNfaType::Auto,
slots,
text,
s,
e,
),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.captures_nfa(slots, text, start)
}
}
}
}
#[cfg(feature = "perf-dfa")]
MatchType::DfaAnchoredReverse => {
match self.find_dfa_anchored_reverse(text, start) {
dfa::Result::Match((s, e)) => self.captures_nfa_type(
MatchNfaType::Auto,
slots,
text,
s,
e,
),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.captures_nfa(slots, text, start),
}
}
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
MatchType::DfaSuffix => {
match self.find_dfa_reverse_suffix(text, start) {
dfa::Result::Match((s, e)) => self.captures_nfa_type(
MatchNfaType::Auto,
slots,
text,
s,
e,
),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.captures_nfa(slots, text, start),
}
}
MatchType::Nfa(ty) => {
self.captures_nfa_type(ty, slots, text, start, text.len())
}
MatchType::Nothing => None,
#[cfg(feature = "perf-dfa")]
MatchType::DfaMany => {
unreachable!("BUG: RegexSet cannot be used with captures")
}
}
}
}
impl<'c> ExecNoSync<'c> {
/// Finds the leftmost-first match using only literal search.
#[cfg(feature = "perf-literal")]
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_literals(
&self,
ty: MatchLiteralType,
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
use self::MatchLiteralType::*;
match ty {
Unanchored => {
let lits = &self.ro.nfa.prefixes;
lits.find(&text[start..]).map(|(s, e)| (start + s, start + e))
}
AnchoredStart => {
let lits = &self.ro.nfa.prefixes;
if start == 0 || !self.ro.nfa.is_anchored_start {
lits.find_start(&text[start..])
.map(|(s, e)| (start + s, start + e))
} else {
None
}
}
AnchoredEnd => {
let lits = &self.ro.suffixes;
lits.find_end(&text[start..])
.map(|(s, e)| (start + s, start + e))
}
AhoCorasick => self
.ro
.ac
.as_ref()
.unwrap()
.find(&text[start..])
.map(|m| (start + m.start(), start + m.end())),
}
}
/// Finds the leftmost-first match (start and end) using only the DFA.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[cfg(feature = "perf-dfa")]
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_dfa_forward(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<(usize, usize)> {
use crate::dfa::Result::*;
let end = match dfa::Fsm::forward(
&self.ro.dfa,
self.cache.value(),
false,
text,
start,
) {
NoMatch(i) => return NoMatch(i),
Quit => return Quit,
Match(end) if start == end => return Match((start, start)),
Match(end) => end,
};
// Now run the DFA in reverse to find the start of the match.
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache.value(),
false,
&text[start..],
end - start,
) {
Match(s) => Match((start + s, end)),
NoMatch(i) => NoMatch(i),
Quit => Quit,
}
}
/// Finds the leftmost-first match (start and end) using only the DFA,
/// but assumes the regex is anchored at the end and therefore starts at
/// the end of the regex and matches in reverse.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[cfg(feature = "perf-dfa")]
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_dfa_anchored_reverse(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<(usize, usize)> {
use crate::dfa::Result::*;
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache.value(),
false,
&text[start..],
text.len() - start,
) {
Match(s) => Match((start + s, text.len())),
NoMatch(i) => NoMatch(i),
Quit => Quit,
}
}
/// Finds the end of the shortest match using only the DFA.
#[cfg(feature = "perf-dfa")]
#[cfg_attr(feature = "perf-inline", inline(always))]
fn shortest_dfa(&self, text: &[u8], start: usize) -> dfa::Result<usize> {
dfa::Fsm::forward(&self.ro.dfa, self.cache.value(), true, text, start)
}
/// Finds the end of the shortest match using only the DFA by scanning for
/// suffix literals.
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
#[cfg_attr(feature = "perf-inline", inline(always))]
fn shortest_dfa_reverse_suffix(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<usize> {
match self.exec_dfa_reverse_suffix(text, start) {
None => self.shortest_dfa(text, start),
Some(r) => r.map(|(_, end)| end),
}
}
/// Finds the end of the shortest match using only the DFA by scanning for
/// suffix literals. It also reports the start of the match.
///
/// Note that if None is returned, then the optimization gave up to avoid
/// worst case quadratic behavior. A forward scanning DFA should be tried
/// next.
///
/// If a match is returned and the full leftmost-first match is desired,
/// then a forward scan starting from the beginning of the match must be
/// done.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
#[cfg_attr(feature = "perf-inline", inline(always))]
fn exec_dfa_reverse_suffix(
&self,
text: &[u8],
original_start: usize,
) -> Option<dfa::Result<(usize, usize)>> {
use crate::dfa::Result::*;
let lcs = self.ro.suffixes.lcs();
debug_assert!(lcs.len() >= 1);
let mut start = original_start;
let mut end = start;
let mut last_literal = start;
while end <= text.len() {
last_literal += match lcs.find(&text[last_literal..]) {
None => return Some(NoMatch(text.len())),
Some(i) => i,
};
end = last_literal + lcs.len();
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache.value(),
false,
&text[start..end],
end - start,
) {
Match(0) | NoMatch(0) => return None,
Match(i) => return Some(Match((start + i, end))),
NoMatch(i) => {
start += i;
last_literal += 1;
continue;
}
Quit => return Some(Quit),
};
}
Some(NoMatch(text.len()))
}
/// Finds the leftmost-first match (start and end) using only the DFA
/// by scanning for suffix literals.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
#[cfg_attr(feature = "perf-inline", inline(always))]
fn find_dfa_reverse_suffix(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<(usize, usize)> {
use crate::dfa::Result::*;
let match_start = match self.exec_dfa_reverse_suffix(text, start) {
None => return self.find_dfa_forward(text, start),
Some(Match((start, _))) => start,
Some(r) => return r,
};
// At this point, we've found a match. The only way to quit now
// without a match is if the DFA gives up (seems unlikely).
//
// Now run the DFA forwards to find the proper end of the match.
// (The suffix literal match can only indicate the earliest
// possible end location, which may appear before the end of the
// leftmost-first match.)
match dfa::Fsm::forward(
&self.ro.dfa,
self.cache.value(),
false,
text,
match_start,
) {
NoMatch(_) => panic!("BUG: reverse match implies forward match"),
Quit => Quit,
Match(e) => Match((match_start, e)),
}
}
/// Executes the NFA engine to return whether there is a match or not.
///
/// Ideally, we could use shortest_nfa(...).is_some() and get the same
/// performance characteristics, but regex sets don't have captures, which
/// shortest_nfa depends on.
#[cfg(feature = "perf-dfa")]
fn match_nfa(&self, text: &[u8], start: usize) -> bool {
self.match_nfa_type(MatchNfaType::Auto, text, start)
}
/// Like match_nfa, but allows specification of the type of NFA engine.
fn match_nfa_type(
&self,
ty: MatchNfaType,
text: &[u8],
start: usize,
) -> bool {
self.exec_nfa(
ty,
&mut [false],
&mut [],
true,
false,
text,
start,
text.len(),
)
}
/// Finds the shortest match using an NFA.
#[cfg(feature = "perf-dfa")]
fn shortest_nfa(&self, text: &[u8], start: usize) -> Option<usize> {
self.shortest_nfa_type(MatchNfaType::Auto, text, start)
}
/// Like shortest_nfa, but allows specification of the type of NFA engine.
fn shortest_nfa_type(
&self,
ty: MatchNfaType,
text: &[u8],
start: usize,
) -> Option<usize> {
let mut slots = [None, None];
if self.exec_nfa(
ty,
&mut [false],
&mut slots,
true,
true,
text,
start,
text.len(),
) {
slots[1]
} else {
None
}
}
/// Like find, but executes an NFA engine.
fn find_nfa(
&self,
ty: MatchNfaType,
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
let mut slots = [None, None];
if self.exec_nfa(
ty,
&mut [false],
&mut slots,
false,
false,
text,
start,
text.len(),
) {
match (slots[0], slots[1]) {
(Some(s), Some(e)) => Some((s, e)),
_ => None,
}
} else {
None
}
}
/// Like find_nfa, but fills in captures.
///
/// `slots` should have length equal to `2 * nfa.captures.len()`.
#[cfg(feature = "perf-dfa")]
fn captures_nfa(
&self,
slots: &mut [Slot],
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
self.captures_nfa_type(
MatchNfaType::Auto,
slots,
text,
start,
text.len(),
)
}
/// Like captures_nfa, but allows specification of type of NFA engine.
fn captures_nfa_type(
&self,
ty: MatchNfaType,
slots: &mut [Slot],
text: &[u8],
start: usize,
end: usize,
) -> Option<(usize, usize)> {
if self.exec_nfa(
ty,
&mut [false],
slots,
false,
false,
text,
start,
end,
) {
match (slots[0], slots[1]) {
(Some(s), Some(e)) => Some((s, e)),
_ => None,
}
} else {
None
}
}
fn exec_nfa(
&self,
mut ty: MatchNfaType,
matches: &mut [bool],
slots: &mut [Slot],
quit_after_match: bool,
quit_after_match_with_pos: bool,
text: &[u8],
start: usize,
end: usize,
) -> bool {
use self::MatchNfaType::*;
if let Auto = ty {
if backtrack::should_exec(self.ro.nfa.len(), text.len()) {
ty = Backtrack;
} else {
ty = PikeVM;
}
}
// The backtracker can't return the shortest match position as it is
// implemented today. So if someone calls `shortest_match` and we need
// to run an NFA, then use the PikeVM.
if quit_after_match_with_pos || ty == PikeVM {
self.exec_pikevm(
matches,
slots,
quit_after_match,
text,
start,
end,
)
} else {
self.exec_backtrack(matches, slots, text, start, end)
}
}
/// Always run the NFA algorithm.
fn exec_pikevm(
&self,
matches: &mut [bool],
slots: &mut [Slot],
quit_after_match: bool,
text: &[u8],
start: usize,
end: usize,
) -> bool {
if self.ro.nfa.uses_bytes() {
pikevm::Fsm::exec(
&self.ro.nfa,
self.cache.value(),
matches,
slots,
quit_after_match,
ByteInput::new(text, self.ro.nfa.only_utf8),
start,
end,
)
} else {
pikevm::Fsm::exec(
&self.ro.nfa,
self.cache.value(),
matches,
slots,
quit_after_match,
CharInput::new(text),
start,
end,
)
}
}
/// Always runs the NFA using bounded backtracking.
fn exec_backtrack(
&self,
matches: &mut [bool],
slots: &mut [Slot],
text: &[u8],
start: usize,
end: usize,
) -> bool {
if self.ro.nfa.uses_bytes() {
backtrack::Bounded::exec(
&self.ro.nfa,
self.cache.value(),
matches,
slots,
ByteInput::new(text, self.ro.nfa.only_utf8),
start,
end,
)
} else {
backtrack::Bounded::exec(
&self.ro.nfa,
self.cache.value(),
matches,
slots,
CharInput::new(text),
start,
end,
)
}
}
/// Finds which regular expressions match the given text.
///
/// `matches` should have length equal to the number of regexes being
/// searched.
///
/// This is only useful when one wants to know which regexes in a set
/// match some text.
pub fn many_matches_at(
&self,
matches: &mut [bool],
text: &[u8],
start: usize,
) -> bool {
use self::MatchType::*;
if !self.is_anchor_end_match(text) {
return false;
}
match self.ro.match_type {
#[cfg(feature = "perf-literal")]
Literal(ty) => {
debug_assert_eq!(matches.len(), 1);
matches[0] = self.find_literals(ty, text, start).is_some();
matches[0]
}
#[cfg(feature = "perf-dfa")]
Dfa | DfaAnchoredReverse | DfaMany => {
match dfa::Fsm::forward_many(
&self.ro.dfa,
self.cache.value(),
matches,
text,
start,
) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.exec_nfa(
MatchNfaType::Auto,
matches,
&mut [],
false,
false,
text,
start,
text.len(),
),
}
}
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
DfaSuffix => {
match dfa::Fsm::forward_many(
&self.ro.dfa,
self.cache.value(),
matches,
text,
start,
) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.exec_nfa(
MatchNfaType::Auto,
matches,
&mut [],
false,
false,
text,
start,
text.len(),
),
}
}
Nfa(ty) => self.exec_nfa(
ty,
matches,
&mut [],
false,
false,
text,
start,
text.len(),
),
Nothing => false,
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_anchor_end_match(&self, text: &[u8]) -> bool {
#[cfg(not(feature = "perf-literal"))]
fn imp(_: &ExecReadOnly, _: &[u8]) -> bool {
true
}
#[cfg(feature = "perf-literal")]
fn imp(ro: &ExecReadOnly, text: &[u8]) -> bool {
// Only do this check if the haystack is big (>1MB).
if text.len() > (1 << 20) && ro.nfa.is_anchored_end {
let lcs = ro.suffixes.lcs();
if lcs.len() >= 1 && !lcs.is_suffix(text) {
return false;
}
}
true
}
imp(&self.ro, text)
}
pub fn capture_name_idx(&self) -> &Arc<HashMap<String, usize>> {
&self.ro.nfa.capture_name_idx
}
}
impl<'c> ExecNoSyncStr<'c> {
pub fn capture_name_idx(&self) -> &Arc<HashMap<String, usize>> {
self.0.capture_name_idx()
}
}
impl Exec {
/// Get a searcher that isn't Sync.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn searcher(&self) -> ExecNoSync<'_> {
ExecNoSync {
ro: &self.ro, // a clone is too expensive here! (and not needed)
cache: self.pool.get(),
}
}
/// Get a searcher that isn't Sync and can match on &str.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn searcher_str(&self) -> ExecNoSyncStr<'_> {
ExecNoSyncStr(self.searcher())
}
/// Build a Regex from this executor.
pub fn into_regex(self) -> re_unicode::Regex {
re_unicode::Regex::from(self)
}
/// Build a RegexSet from this executor.
pub fn into_regex_set(self) -> re_set::unicode::RegexSet {
re_set::unicode::RegexSet::from(self)
}
/// Build a Regex from this executor that can match arbitrary bytes.
pub fn into_byte_regex(self) -> re_bytes::Regex {
re_bytes::Regex::from(self)
}
/// Build a RegexSet from this executor that can match arbitrary bytes.
pub fn into_byte_regex_set(self) -> re_set::bytes::RegexSet {
re_set::bytes::RegexSet::from(self)
}
/// The original regular expressions given by the caller that were
/// compiled.
pub fn regex_strings(&self) -> &[String] {
&self.ro.res
}
/// Return a slice of capture names.
///
/// Any capture that isn't named is None.
pub fn capture_names(&self) -> &[Option<String>] {
&self.ro.nfa.captures
}
/// Return a reference to named groups mapping (from group name to
/// group position).
pub fn capture_name_idx(&self) -> &Arc<HashMap<String, usize>> {
&self.ro.nfa.capture_name_idx
}
}
impl Clone for Exec {
fn clone(&self) -> Exec {
let pool = ExecReadOnly::new_pool(&self.ro);
Exec { ro: self.ro.clone(), pool }
}
}
impl ExecReadOnly {
fn choose_match_type(&self, hint: Option<MatchType>) -> MatchType {
if let Some(MatchType::Nfa(_)) = hint {
return hint.unwrap();
}
// If the NFA is empty, then we'll never match anything.
if self.nfa.insts.is_empty() {
return MatchType::Nothing;
}
if let Some(literalty) = self.choose_literal_match_type() {
return literalty;
}
if let Some(dfaty) = self.choose_dfa_match_type() {
return dfaty;
}
// We're so totally hosed.
MatchType::Nfa(MatchNfaType::Auto)
}
/// If a plain literal scan can be used, then a corresponding literal
/// search type is returned.
fn choose_literal_match_type(&self) -> Option<MatchType> {
#[cfg(not(feature = "perf-literal"))]
fn imp(_: &ExecReadOnly) -> Option<MatchType> {
None
}
#[cfg(feature = "perf-literal")]
fn imp(ro: &ExecReadOnly) -> Option<MatchType> {
// If our set of prefixes is complete, then we can use it to find
// a match in lieu of a regex engine. This doesn't quite work well
// in the presence of multiple regexes, so only do it when there's
// one.
//
// TODO(burntsushi): Also, don't try to match literals if the regex
// is partially anchored. We could technically do it, but we'd need
// to create two sets of literals: all of them and then the subset
// that aren't anchored. We would then only search for all of them
// when at the beginning of the input and use the subset in all
// other cases.
if ro.res.len() != 1 {
return None;
}
if ro.ac.is_some() {
return Some(MatchType::Literal(
MatchLiteralType::AhoCorasick,
));
}
if ro.nfa.prefixes.complete() {
return if ro.nfa.is_anchored_start {
Some(MatchType::Literal(MatchLiteralType::AnchoredStart))
} else {
Some(MatchType::Literal(MatchLiteralType::Unanchored))
};
}
if ro.suffixes.complete() {
return if ro.nfa.is_anchored_end {
Some(MatchType::Literal(MatchLiteralType::AnchoredEnd))
} else {
// This case shouldn't happen. When the regex isn't
// anchored, then complete prefixes should imply complete
// suffixes.
Some(MatchType::Literal(MatchLiteralType::Unanchored))
};
}
None
}
imp(self)
}
/// If a DFA scan can be used, then choose the appropriate DFA strategy.
fn choose_dfa_match_type(&self) -> Option<MatchType> {
#[cfg(not(feature = "perf-dfa"))]
fn imp(_: &ExecReadOnly) -> Option<MatchType> {
None
}
#[cfg(feature = "perf-dfa")]
fn imp(ro: &ExecReadOnly) -> Option<MatchType> {
if !dfa::can_exec(&ro.dfa) {
return None;
}
// Regex sets require a slightly specialized path.
if ro.res.len() >= 2 {
return Some(MatchType::DfaMany);
}
// If the regex is anchored at the end but not the start, then
// just match in reverse from the end of the haystack.
if !ro.nfa.is_anchored_start && ro.nfa.is_anchored_end {
return Some(MatchType::DfaAnchoredReverse);
}
#[cfg(feature = "perf-literal")]
{
// If there's a longish suffix literal, then it might be faster
// to look for that first.
if ro.should_suffix_scan() {
return Some(MatchType::DfaSuffix);
}
}
// Fall back to your garden variety forward searching lazy DFA.
Some(MatchType::Dfa)
}
imp(self)
}
/// Returns true if the program is amenable to suffix scanning.
///
/// When this is true, as a heuristic, we assume it is OK to quickly scan
/// for suffix literals and then do a *reverse* DFA match from any matches
/// produced by the literal scan. (And then followed by a forward DFA
/// search, since the previously found suffix literal maybe not actually be
/// the end of a match.)
///
/// This is a bit of a specialized optimization, but can result in pretty
/// big performance wins if 1) there are no prefix literals and 2) the
/// suffix literals are pretty rare in the text. (1) is obviously easy to
/// account for but (2) is harder. As a proxy, we assume that longer
/// strings are generally rarer, so we only enable this optimization when
/// we have a meaty suffix.
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
fn should_suffix_scan(&self) -> bool {
if self.suffixes.is_empty() {
return false;
}
let lcs_len = self.suffixes.lcs().char_len();
lcs_len >= 3 && lcs_len > self.dfa.prefixes.lcp().char_len()
}
fn new_pool(ro: &Arc<ExecReadOnly>) -> Box<Pool<ProgramCache>> {
let ro = ro.clone();
Box::new(Pool::new(Box::new(move || {
AssertUnwindSafe(RefCell::new(ProgramCacheInner::new(&ro)))
})))
}
}
#[derive(Clone, Copy, Debug)]
enum MatchType {
/// A single or multiple literal search. This is only used when the regex
/// can be decomposed into a literal search.
#[cfg(feature = "perf-literal")]
Literal(MatchLiteralType),
/// A normal DFA search.
#[cfg(feature = "perf-dfa")]
Dfa,
/// A reverse DFA search starting from the end of a haystack.
#[cfg(feature = "perf-dfa")]
DfaAnchoredReverse,
/// A reverse DFA search with suffix literal scanning.
#[cfg(all(feature = "perf-dfa", feature = "perf-literal"))]
DfaSuffix,
/// Use the DFA on two or more regular expressions.
#[cfg(feature = "perf-dfa")]
DfaMany,
/// An NFA variant.
Nfa(MatchNfaType),
/// No match is ever possible, so don't ever try to search.
Nothing,
}
#[derive(Clone, Copy, Debug)]
#[cfg(feature = "perf-literal")]
enum MatchLiteralType {
/// Match literals anywhere in text.
Unanchored,
/// Match literals only at the start of text.
AnchoredStart,
/// Match literals only at the end of text.
AnchoredEnd,
/// Use an Aho-Corasick automaton. This requires `ac` to be Some on
/// ExecReadOnly.
AhoCorasick,
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum MatchNfaType {
/// Choose between Backtrack and PikeVM.
Auto,
/// NFA bounded backtracking.
///
/// (This is only set by tests, since it never makes sense to always want
/// backtracking.)
Backtrack,
/// The Pike VM.
///
/// (This is only set by tests, since it never makes sense to always want
/// the Pike VM.)
PikeVM,
}
/// `ProgramCache` maintains reusable allocations for each matching engine
/// available to a particular program.
///
/// We declare this as unwind safe since it's a cache that's only used for
/// performance purposes. If a panic occurs, it is (or should be) always safe
/// to continue using the same regex object.
pub type ProgramCache = AssertUnwindSafe<RefCell<ProgramCacheInner>>;
#[derive(Debug)]
pub struct ProgramCacheInner {
pub pikevm: pikevm::Cache,
pub backtrack: backtrack::Cache,
#[cfg(feature = "perf-dfa")]
pub dfa: dfa::Cache,
#[cfg(feature = "perf-dfa")]
pub dfa_reverse: dfa::Cache,
}
impl ProgramCacheInner {
fn new(ro: &ExecReadOnly) -> Self {
ProgramCacheInner {
pikevm: pikevm::Cache::new(&ro.nfa),
backtrack: backtrack::Cache::new(&ro.nfa),
#[cfg(feature = "perf-dfa")]
dfa: dfa::Cache::new(&ro.dfa),
#[cfg(feature = "perf-dfa")]
dfa_reverse: dfa::Cache::new(&ro.dfa_reverse),
}
}
}
/// Alternation literals checks if the given HIR is a simple alternation of
/// literals, and if so, returns them. Otherwise, this returns None.
#[cfg(feature = "perf-literal")]
fn alternation_literals(expr: &Hir) -> Option<Vec<Vec<u8>>> {
use regex_syntax::hir::{HirKind, Literal};
// This is pretty hacky, but basically, if `is_alternation_literal` is
// true, then we can make several assumptions about the structure of our
// HIR. This is what justifies the `unreachable!` statements below.
//
// This code should be refactored once we overhaul this crate's
// optimization pipeline, because this is a terribly inflexible way to go
// about things.
if !expr.is_alternation_literal() {
return None;
}
let alts = match *expr.kind() {
HirKind::Alternation(ref alts) => alts,
_ => return None, // one literal isn't worth it
};
let extendlit = |lit: &Literal, dst: &mut Vec<u8>| match *lit {
Literal::Unicode(c) => {
let mut buf = [0; 4];
dst.extend_from_slice(c.encode_utf8(&mut buf).as_bytes());
}
Literal::Byte(b) => {
dst.push(b);
}
};
let mut lits = vec![];
for alt in alts {
let mut lit = vec![];
match *alt.kind() {
HirKind::Literal(ref x) => extendlit(x, &mut lit),
HirKind::Concat(ref exprs) => {
for e in exprs {
match *e.kind() {
HirKind::Literal(ref x) => extendlit(x, &mut lit),
_ => unreachable!("expected literal, got {:?}", e),
}
}
}
_ => unreachable!("expected literal or concat, got {:?}", alt),
}
lits.push(lit);
}
Some(lits)
}
#[cfg(test)]
mod test {
#[test]
fn uppercut_s_backtracking_bytes_default_bytes_mismatch() {
use crate::internal::ExecBuilder;
let backtrack_bytes_re = ExecBuilder::new("^S")
.bounded_backtracking()
.only_utf8(false)
.build()
.map(|exec| exec.into_byte_regex())
.map_err(|err| format!("{}", err))
.unwrap();
let default_bytes_re = ExecBuilder::new("^S")
.only_utf8(false)
.build()
.map(|exec| exec.into_byte_regex())
.map_err(|err| format!("{}", err))
.unwrap();
let input = vec![83, 83];
let s1 = backtrack_bytes_re.split(&input);
let s2 = default_bytes_re.split(&input);
for (chunk1, chunk2) in s1.zip(s2) {
assert_eq!(chunk1, chunk2);
}
}
#[test]
fn unicode_lit_star_backtracking_utf8bytes_default_utf8bytes_mismatch() {
use crate::internal::ExecBuilder;
let backtrack_bytes_re = ExecBuilder::new(r"^(?u:\*)")
.bounded_backtracking()
.bytes(true)
.build()
.map(|exec| exec.into_regex())
.map_err(|err| format!("{}", err))
.unwrap();
let default_bytes_re = ExecBuilder::new(r"^(?u:\*)")
.bytes(true)
.build()
.map(|exec| exec.into_regex())
.map_err(|err| format!("{}", err))
.unwrap();
let input = "**";
let s1 = backtrack_bytes_re.split(input);
let s2 = default_bytes_re.split(input);
for (chunk1, chunk2) in s1.zip(s2) {
assert_eq!(chunk1, chunk2);
}
}
}