1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
//! Unmanaged version of the pool.
//!
//! "Unmanaged" means that no manager is used to create and recycle objects.
//! Objects either need to be created upfront or by adding them using the
//! [`Pool::add()`] or [`Pool::try_add()`] methods.
//!
//! # Example
//!
//! ```rust
//! use deadpool::unmanaged::Pool;
//!
//! struct Computer {}
//!
//! impl Computer {
//!     async fn get_answer(&self) -> i32 {
//!         42
//!     }
//! }
//!
//! #[tokio::main]
//! async fn main() {
//!     let pool = Pool::from(vec![
//!         Computer {},
//!         Computer {},
//!     ]);
//!     let s = pool.get().await.unwrap();
//!     assert_eq!(s.get_answer().await, 42);
//! }
//! ```

mod config;
mod errors;

use std::{
    convert::TryInto,
    ops::{Deref, DerefMut},
    sync::{
        atomic::{AtomicIsize, AtomicUsize, Ordering},
        Arc, Mutex, Weak,
    },
    time::Duration,
};

use tokio::sync::{Semaphore, TryAcquireError};

pub use crate::Status;

pub use self::{config::PoolConfig, errors::PoolError};

/// Wrapper around the actual pooled object which implements [`Deref`],
/// [`DerefMut`] and [`Drop`] traits.
///
/// Use this object just as if it was of type `T` and upon leaving a scope the
/// [`Drop::drop()`] will take care of returning it to the pool.
#[derive(Debug)]
#[must_use]
pub struct Object<T> {
    /// Actual pooled object.
    obj: Option<T>,

    /// Pool to return the pooled object to.
    pool: Weak<PoolInner<T>>,
}

impl<T> Object<T> {
    /// Takes this object from the pool permanently. This reduces the size of
    /// the pool. If needed, the object can later be added back to the pool
    /// using the [`Pool::add()`] or [`Pool::try_add()`] methods.
    #[must_use]
    pub fn take(mut this: Self) -> T {
        if let Some(pool) = this.pool.upgrade() {
            let _ = pool.size.fetch_sub(1, Ordering::Relaxed);
            pool.size_semaphore.add_permits(1);
        }
        this.obj.take().unwrap()
    }
}

impl<T> Drop for Object<T> {
    fn drop(&mut self) {
        if let Some(obj) = self.obj.take() {
            if let Some(pool) = self.pool.upgrade() {
                {
                    let mut queue = pool.queue.lock().unwrap();
                    queue.push(obj);
                }
                let _ = pool.available.fetch_add(1, Ordering::Relaxed);
                pool.semaphore.add_permits(1);
                pool.clean_up();
            }
        }
    }
}

impl<T> Deref for Object<T> {
    type Target = T;
    fn deref(&self) -> &T {
        self.obj.as_ref().unwrap()
    }
}

impl<T> DerefMut for Object<T> {
    fn deref_mut(&mut self) -> &mut T {
        self.obj.as_mut().unwrap()
    }
}

impl<T> AsRef<T> for Object<T> {
    fn as_ref(&self) -> &T {
        self
    }
}

impl<T> AsMut<T> for Object<T> {
    fn as_mut(&mut self) -> &mut T {
        self
    }
}

/// Generic object and connection pool. This is the static version of the pool
/// which doesn't include.
///
/// This struct can be cloned and transferred across thread boundaries and uses
/// reference counting for its internal state.
///
/// A pool of existing objects can be created from an existing collection of
/// objects if it has a known exact size:
/// ```rust
/// use deadpool::unmanaged::Pool;
/// let pool = Pool::from(vec![1, 2, 3]);
/// ```
#[derive(Debug)]
pub struct Pool<T> {
    inner: Arc<PoolInner<T>>,
}

impl<T> Clone for Pool<T> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.clone(),
        }
    }
}

impl<T> Default for Pool<T> {
    fn default() -> Self {
        Self::from_config(&PoolConfig::default())
    }
}

impl<T> Pool<T> {
    /// Creates a new empty [`Pool`] with the given `max_size`.
    #[must_use]
    pub fn new(max_size: usize) -> Self {
        Self::from_config(&PoolConfig::new(max_size))
    }

    /// Create a new empty [`Pool`] using the given [`PoolConfig`].
    #[must_use]
    pub fn from_config(config: &PoolConfig) -> Self {
        Self {
            inner: Arc::new(PoolInner {
                config: *config,
                queue: Mutex::new(Vec::with_capacity(config.max_size)),
                size: AtomicUsize::new(0),
                size_semaphore: Semaphore::new(config.max_size),
                available: AtomicIsize::new(0),
                semaphore: Semaphore::new(0),
            }),
        }
    }

    /// Retrieves an [`Object`] from this [`Pool`] or waits for the one to
    /// become available.
    ///
    /// # Errors
    ///
    /// See [`PoolError`] for details.
    pub async fn get(&self) -> Result<Object<T>, PoolError> {
        self.timeout_get(self.inner.config.timeout).await
    }

    /// Retrieves an [`Object`] from this [`Pool`] and doesn't wait if there is
    /// currently no [`Object`] is available and the maximum [`Pool`] size has
    /// been reached.
    ///
    /// # Errors
    ///
    /// See [`PoolError`] for details.
    pub fn try_get(&self) -> Result<Object<T>, PoolError> {
        let inner = self.inner.as_ref();
        let permit = inner.semaphore.try_acquire().map_err(|e| match e {
            TryAcquireError::NoPermits => PoolError::Timeout,
            TryAcquireError::Closed => PoolError::Closed,
        })?;
        let obj = {
            let mut queue = inner.queue.lock().unwrap();
            queue.pop().unwrap()
        };
        permit.forget();
        let _ = inner.available.fetch_sub(1, Ordering::Relaxed);
        Ok(Object {
            pool: Arc::downgrade(&self.inner),
            obj: Some(obj),
        })
    }

    /// Retrieves an [`Object`] from this [`Pool`] using a different `timeout`
    /// than the configured one.
    ///
    /// # Errors
    ///
    /// See [`PoolError`] for details.
    pub async fn timeout_get(&self, timeout: Option<Duration>) -> Result<Object<T>, PoolError> {
        let inner = self.inner.as_ref();
        let permit = match (timeout, inner.config.runtime) {
            (None, _) => inner
                .semaphore
                .acquire()
                .await
                .map_err(|_| PoolError::Closed),
            (Some(timeout), _) if timeout.as_nanos() == 0 => {
                inner.semaphore.try_acquire().map_err(|e| match e {
                    TryAcquireError::NoPermits => PoolError::Timeout,
                    TryAcquireError::Closed => PoolError::Closed,
                })
            }
            (Some(timeout), Some(runtime)) => runtime
                .timeout(timeout, inner.semaphore.acquire())
                .await
                .ok_or(PoolError::Timeout)?
                .map_err(|_| PoolError::Closed),
            (Some(_), None) => Err(PoolError::NoRuntimeSpecified),
        }?;
        let obj = {
            let mut queue = inner.queue.lock().unwrap();
            queue.pop().unwrap()
        };
        permit.forget();
        let _ = inner.available.fetch_sub(1, Ordering::Relaxed);
        Ok(Object {
            pool: Arc::downgrade(&self.inner),
            obj: Some(obj),
        })
    }

    /// Adds an `object` to this [`Pool`].
    ///
    /// If the [`Pool`] size has already reached its maximum, then this function
    /// blocks until the `object` can be added to the [`Pool`].
    ///
    /// # Errors
    ///
    /// If the [`Pool`] has been closed a tuple containing the `object` and
    /// the [`PoolError`] is returned instead.
    pub async fn add(&self, object: T) -> Result<(), (T, PoolError)> {
        match self.inner.size_semaphore.acquire().await {
            Ok(permit) => {
                permit.forget();
                self._add(object);
                Ok(())
            }
            Err(_) => Err((object, PoolError::Closed)),
        }
    }

    /// Tries to add an `object` to this [`Pool`].
    ///
    /// # Errors
    ///
    /// If the [`Pool`] size has already reached its maximum, or the [`Pool`]
    /// has been closed, then a tuple containing the `object` and the
    /// [`PoolError`] is returned instead.
    pub fn try_add(&self, object: T) -> Result<(), (T, PoolError)> {
        match self.inner.size_semaphore.try_acquire() {
            Ok(permit) => {
                permit.forget();
                self._add(object);
                Ok(())
            }
            Err(e) => Err(match e {
                TryAcquireError::NoPermits => (object, PoolError::Timeout),
                TryAcquireError::Closed => (object, PoolError::Closed),
            }),
        }
    }

    /// Internal function which adds an `object` to this [`Pool`].
    ///
    /// Prior calling this it must be guaranteed that `size` doesn't exceed
    /// `max_size`. In the methods `add` and `try_add` this is ensured by using
    /// the `size_semaphore`.
    fn _add(&self, object: T) {
        let _ = self.inner.size.fetch_add(1, Ordering::Relaxed);
        {
            let mut queue = self.inner.queue.lock().unwrap();
            queue.push(object);
        }
        let _ = self.inner.available.fetch_add(1, Ordering::Relaxed);
        self.inner.semaphore.add_permits(1);
    }

    /// Removes an [`Object`] from this [`Pool`].
    pub async fn remove(&self) -> Result<T, PoolError> {
        self.get().await.map(Object::take)
    }

    /// Tries to remove an [`Object`] from this [`Pool`].
    pub fn try_remove(&self) -> Result<T, PoolError> {
        self.try_get().map(Object::take)
    }

    /// Removes an [`Object`] from this [`Pool`] using a different `timeout`
    /// than the configured one.
    pub async fn timeout_remove(&self, timeout: Option<Duration>) -> Result<T, PoolError> {
        self.timeout_get(timeout).await.map(Object::take)
    }

    /// Closes this [`Pool`].
    ///
    /// All current and future tasks waiting for [`Object`]s will return
    /// [`PoolError::Closed`] immediately.
    pub fn close(&self) {
        self.inner.semaphore.close();
        self.inner.size_semaphore.close();
        self.inner.clear();
    }

    /// Indicates whether this [`Pool`] has been closed.
    pub fn is_closed(&self) -> bool {
        self.inner.is_closed()
    }

    /// Retrieves [`Status`] of this [`Pool`].
    #[must_use]
    pub fn status(&self) -> Status {
        let max_size = self.inner.config.max_size;
        let size = self.inner.size.load(Ordering::Relaxed);
        let available = self.inner.available.load(Ordering::Relaxed);
        Status {
            max_size,
            size,
            available,
        }
    }
}

#[derive(Debug)]
struct PoolInner<T> {
    config: PoolConfig,
    queue: Mutex<Vec<T>>,
    size: AtomicUsize,
    /// This semaphore has as many permits as `max_size - size`. Every time
    /// an [`Object`] is added to the [`Pool`] a permit is removed from the
    /// semaphore and every time an [`Object`] is removed a permit is returned
    /// back.
    size_semaphore: Semaphore,
    /// Number of available [`Object`]s in the [`Pool`]. If there are no
    /// [`Object`]s in the [`Pool`] this number can become negative and store
    /// the number of [`Future`]s waiting for an [`Object`].
    ///
    /// [`Future`]: std::future::Future
    available: AtomicIsize,
    semaphore: Semaphore,
}

impl<T> PoolInner<T> {
    /// Cleans up internals of this [`Pool`].
    ///
    /// This method is called after closing the [`Pool`] and whenever an
    /// [`Object`] is returned to the [`Pool`] and makes sure closed [`Pool`]s
    /// don't contain any [`Object`]s.
    fn clean_up(&self) {
        if self.is_closed() {
            self.clear();
        }
    }

    /// Removes all the [`Object`]s which are currently part of this [`Pool`].
    fn clear(&self) {
        let mut queue = self.queue.lock().unwrap();
        let _ = self.size.fetch_sub(queue.len(), Ordering::Relaxed);
        let _ = self
            .available
            .fetch_sub(queue.len() as isize, Ordering::Relaxed);
        queue.clear();
    }

    /// Indicates whether this [`Pool`] has been closed.
    fn is_closed(&self) -> bool {
        matches!(
            self.semaphore.try_acquire_many(0),
            Err(TryAcquireError::Closed)
        )
    }
}

impl<T, I> From<I> for Pool<T>
where
    I: IntoIterator<Item = T>,
    <I as IntoIterator>::IntoIter: ExactSizeIterator,
{
    /// Creates a new [`Pool`] from the given [`ExactSizeIterator`] of
    /// [`Object`]s.
    fn from(iter: I) -> Self {
        let queue = iter.into_iter().collect::<Vec<_>>();
        let len = queue.len();
        Self {
            inner: Arc::new(PoolInner {
                queue: Mutex::new(queue),
                config: PoolConfig::new(len),
                size: AtomicUsize::new(len),
                size_semaphore: Semaphore::new(0),
                available: AtomicIsize::new(len.try_into().unwrap()),
                semaphore: Semaphore::new(len),
            }),
        }
    }
}