1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
use crate::loom::sync::{Mutex, MutexGuard};
use crate::runtime::signal::Handle as SignalHandle;
use crate::signal::unix::{signal_with_handle, SignalKind};
use crate::sync::watch;
use std::io;
use std::process::ExitStatus;

/// An interface for waiting on a process to exit.
pub(crate) trait Wait {
    /// Get the identifier for this process or diagnostics.
    fn id(&self) -> u32;
    /// Try waiting for a process to exit in a non-blocking manner.
    fn try_wait(&mut self) -> io::Result<Option<ExitStatus>>;
}

impl<T: Wait> Wait for &mut T {
    fn id(&self) -> u32 {
        (**self).id()
    }

    fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
        (**self).try_wait()
    }
}

/// An interface for queueing up an orphaned process so that it can be reaped.
pub(crate) trait OrphanQueue<T> {
    /// Adds an orphan to the queue.
    fn push_orphan(&self, orphan: T);
}

impl<T, O: OrphanQueue<T>> OrphanQueue<T> for &O {
    fn push_orphan(&self, orphan: T) {
        (**self).push_orphan(orphan);
    }
}

/// An implementation of `OrphanQueue`.
#[derive(Debug)]
pub(crate) struct OrphanQueueImpl<T> {
    sigchild: Mutex<Option<watch::Receiver<()>>>,
    queue: Mutex<Vec<T>>,
}

impl<T> OrphanQueueImpl<T> {
    cfg_not_has_const_mutex_new! {
        pub(crate) fn new() -> Self {
            Self {
                sigchild: Mutex::new(None),
                queue: Mutex::new(Vec::new()),
            }
        }
    }

    cfg_has_const_mutex_new! {
        pub(crate) const fn new() -> Self {
            Self {
                sigchild: Mutex::const_new(None),
                queue: Mutex::const_new(Vec::new()),
            }
        }
    }

    #[cfg(test)]
    fn len(&self) -> usize {
        self.queue.lock().len()
    }

    pub(crate) fn push_orphan(&self, orphan: T)
    where
        T: Wait,
    {
        self.queue.lock().push(orphan)
    }

    /// Attempts to reap every process in the queue, ignoring any errors and
    /// enqueueing any orphans which have not yet exited.
    pub(crate) fn reap_orphans(&self, handle: &SignalHandle)
    where
        T: Wait,
    {
        // If someone else is holding the lock, they will be responsible for draining
        // the queue as necessary, so we can safely bail if that happens
        if let Some(mut sigchild_guard) = self.sigchild.try_lock() {
            match &mut *sigchild_guard {
                Some(sigchild) => {
                    if sigchild.try_has_changed().and_then(Result::ok).is_some() {
                        drain_orphan_queue(self.queue.lock());
                    }
                }
                None => {
                    let queue = self.queue.lock();

                    // Be lazy and only initialize the SIGCHLD listener if there
                    // are any orphaned processes in the queue.
                    if !queue.is_empty() {
                        // An errors shouldn't really happen here, but if it does it
                        // means that the signal driver isn't running, in
                        // which case there isn't anything we can
                        // register/initialize here, so we can try again later
                        if let Ok(sigchild) = signal_with_handle(SignalKind::child(), handle) {
                            *sigchild_guard = Some(sigchild);
                            drain_orphan_queue(queue);
                        }
                    }
                }
            }
        }
    }
}

fn drain_orphan_queue<T>(mut queue: MutexGuard<'_, Vec<T>>)
where
    T: Wait,
{
    for i in (0..queue.len()).rev() {
        match queue[i].try_wait() {
            Ok(None) => {}
            Ok(Some(_)) | Err(_) => {
                // The stdlib handles interruption errors (EINTR) when polling a child process.
                // All other errors represent invalid inputs or pids that have already been
                // reaped, so we can drop the orphan in case an error is raised.
                queue.swap_remove(i);
            }
        }
    }

    drop(queue);
}

#[cfg(all(test, not(loom)))]
pub(crate) mod test {
    use super::*;
    use crate::runtime::io::Driver as IoDriver;
    use crate::runtime::signal::{Driver as SignalDriver, Handle as SignalHandle};
    use crate::sync::watch;
    use std::cell::{Cell, RefCell};
    use std::io;
    use std::os::unix::process::ExitStatusExt;
    use std::process::ExitStatus;
    use std::rc::Rc;

    pub(crate) struct MockQueue<W> {
        pub(crate) all_enqueued: RefCell<Vec<W>>,
    }

    impl<W> MockQueue<W> {
        pub(crate) fn new() -> Self {
            Self {
                all_enqueued: RefCell::new(Vec::new()),
            }
        }
    }

    impl<W> OrphanQueue<W> for MockQueue<W> {
        fn push_orphan(&self, orphan: W) {
            self.all_enqueued.borrow_mut().push(orphan);
        }
    }

    struct MockWait {
        total_waits: Rc<Cell<usize>>,
        num_wait_until_status: usize,
        return_err: bool,
    }

    impl MockWait {
        fn new(num_wait_until_status: usize) -> Self {
            Self {
                total_waits: Rc::new(Cell::new(0)),
                num_wait_until_status,
                return_err: false,
            }
        }

        fn with_err() -> Self {
            Self {
                total_waits: Rc::new(Cell::new(0)),
                num_wait_until_status: 0,
                return_err: true,
            }
        }
    }

    impl Wait for MockWait {
        fn id(&self) -> u32 {
            42
        }

        fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
            let waits = self.total_waits.get();

            let ret = if self.num_wait_until_status == waits {
                if self.return_err {
                    Ok(Some(ExitStatus::from_raw(0)))
                } else {
                    Err(io::Error::new(io::ErrorKind::Other, "mock err"))
                }
            } else {
                Ok(None)
            };

            self.total_waits.set(waits + 1);
            ret
        }
    }

    #[test]
    fn drain_attempts_a_single_reap_of_all_queued_orphans() {
        let first_orphan = MockWait::new(0);
        let second_orphan = MockWait::new(1);
        let third_orphan = MockWait::new(2);
        let fourth_orphan = MockWait::with_err();

        let first_waits = first_orphan.total_waits.clone();
        let second_waits = second_orphan.total_waits.clone();
        let third_waits = third_orphan.total_waits.clone();
        let fourth_waits = fourth_orphan.total_waits.clone();

        let orphanage = OrphanQueueImpl::new();
        orphanage.push_orphan(first_orphan);
        orphanage.push_orphan(third_orphan);
        orphanage.push_orphan(second_orphan);
        orphanage.push_orphan(fourth_orphan);

        assert_eq!(orphanage.len(), 4);

        drain_orphan_queue(orphanage.queue.lock());
        assert_eq!(orphanage.len(), 2);
        assert_eq!(first_waits.get(), 1);
        assert_eq!(second_waits.get(), 1);
        assert_eq!(third_waits.get(), 1);
        assert_eq!(fourth_waits.get(), 1);

        drain_orphan_queue(orphanage.queue.lock());
        assert_eq!(orphanage.len(), 1);
        assert_eq!(first_waits.get(), 1);
        assert_eq!(second_waits.get(), 2);
        assert_eq!(third_waits.get(), 2);
        assert_eq!(fourth_waits.get(), 1);

        drain_orphan_queue(orphanage.queue.lock());
        assert_eq!(orphanage.len(), 0);
        assert_eq!(first_waits.get(), 1);
        assert_eq!(second_waits.get(), 2);
        assert_eq!(third_waits.get(), 3);
        assert_eq!(fourth_waits.get(), 1);

        // Safe to reap when empty
        drain_orphan_queue(orphanage.queue.lock());
    }

    #[test]
    fn no_reap_if_no_signal_received() {
        let (tx, rx) = watch::channel(());

        let handle = SignalHandle::default();

        let orphanage = OrphanQueueImpl::new();
        *orphanage.sigchild.lock() = Some(rx);

        let orphan = MockWait::new(2);
        let waits = orphan.total_waits.clone();
        orphanage.push_orphan(orphan);

        orphanage.reap_orphans(&handle);
        assert_eq!(waits.get(), 0);

        orphanage.reap_orphans(&handle);
        assert_eq!(waits.get(), 0);

        tx.send(()).unwrap();
        orphanage.reap_orphans(&handle);
        assert_eq!(waits.get(), 1);
    }

    #[test]
    fn no_reap_if_signal_lock_held() {
        let handle = SignalHandle::default();

        let orphanage = OrphanQueueImpl::new();
        let signal_guard = orphanage.sigchild.lock();

        let orphan = MockWait::new(2);
        let waits = orphan.total_waits.clone();
        orphanage.push_orphan(orphan);

        orphanage.reap_orphans(&handle);
        assert_eq!(waits.get(), 0);

        drop(signal_guard);
    }

    #[cfg_attr(miri, ignore)] // Miri does not support epoll.
    #[test]
    fn does_not_register_signal_if_queue_empty() {
        let (io_driver, io_handle) = IoDriver::new(1024).unwrap();
        let signal_driver = SignalDriver::new(io_driver, &io_handle).unwrap();
        let handle = signal_driver.handle();

        let orphanage = OrphanQueueImpl::new();
        assert!(orphanage.sigchild.lock().is_none()); // Sanity

        // No register when queue empty
        orphanage.reap_orphans(&handle);
        assert!(orphanage.sigchild.lock().is_none());

        let orphan = MockWait::new(2);
        let waits = orphan.total_waits.clone();
        orphanage.push_orphan(orphan);

        orphanage.reap_orphans(&handle);
        assert!(orphanage.sigchild.lock().is_some());
        assert_eq!(waits.get(), 1); // Eager reap when registering listener
    }

    #[test]
    fn does_nothing_if_signal_could_not_be_registered() {
        let handle = SignalHandle::default();

        let orphanage = OrphanQueueImpl::new();
        assert!(orphanage.sigchild.lock().is_none());

        let orphan = MockWait::new(2);
        let waits = orphan.total_waits.clone();
        orphanage.push_orphan(orphan);

        // Signal handler has "gone away", nothing to register or reap
        orphanage.reap_orphans(&handle);
        assert!(orphanage.sigchild.lock().is_none());
        assert_eq!(waits.get(), 0);
    }
}