1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//! Unix handling of child processes.
//!
//! Right now the only "fancy" thing about this is how we implement the
//! `Future` implementation on `Child` to get the exit status. Unix offers
//! no way to register a child with epoll, and the only real way to get a
//! notification when a process exits is the SIGCHLD signal.
//!
//! Signal handling in general is *super* hairy and complicated, and it's even
//! more complicated here with the fact that signals are coalesced, so we may
//! not get a SIGCHLD-per-child.
//!
//! Our best approximation here is to check *all spawned processes* for all
//! SIGCHLD signals received. To do that we create a `Signal`, implemented in
//! the `tokio-net` crate, which is a stream over signals being received.
//!
//! Later when we poll the process's exit status we simply check to see if a
//! SIGCHLD has happened since we last checked, and while that returns "yes" we
//! keep trying.
//!
//! Note that this means that this isn't really scalable, but then again
//! processes in general aren't scalable (e.g. millions) so it shouldn't be that
//! bad in theory...

pub(crate) mod orphan;
use orphan::{OrphanQueue, OrphanQueueImpl, Wait};

mod reap;
use reap::Reaper;

use crate::io::{AsyncRead, AsyncWrite, PollEvented, ReadBuf};
use crate::process::kill::Kill;
use crate::process::SpawnedChild;
use crate::runtime::signal::Handle as SignalHandle;
use crate::signal::unix::{signal, Signal, SignalKind};

use mio::event::Source;
use mio::unix::SourceFd;
use std::fmt;
use std::fs::File;
use std::future::Future;
use std::io;
#[cfg(not(tokio_no_as_fd))]
use std::os::unix::io::{AsFd, BorrowedFd};
use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use std::pin::Pin;
use std::process::{Child as StdChild, ExitStatus, Stdio};
use std::task::Context;
use std::task::Poll;

impl Wait for StdChild {
    fn id(&self) -> u32 {
        self.id()
    }

    fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
        self.try_wait()
    }
}

impl Kill for StdChild {
    fn kill(&mut self) -> io::Result<()> {
        self.kill()
    }
}

cfg_not_has_const_mutex_new! {
    fn get_orphan_queue() -> &'static OrphanQueueImpl<StdChild> {
        use crate::util::once_cell::OnceCell;

        static ORPHAN_QUEUE: OnceCell<OrphanQueueImpl<StdChild>> = OnceCell::new();

        ORPHAN_QUEUE.get(OrphanQueueImpl::new)
    }
}

cfg_has_const_mutex_new! {
    fn get_orphan_queue() -> &'static OrphanQueueImpl<StdChild> {
        static ORPHAN_QUEUE: OrphanQueueImpl<StdChild> = OrphanQueueImpl::new();

        &ORPHAN_QUEUE
    }
}

pub(crate) struct GlobalOrphanQueue;

impl fmt::Debug for GlobalOrphanQueue {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        get_orphan_queue().fmt(fmt)
    }
}

impl GlobalOrphanQueue {
    pub(crate) fn reap_orphans(handle: &SignalHandle) {
        get_orphan_queue().reap_orphans(handle)
    }
}

impl OrphanQueue<StdChild> for GlobalOrphanQueue {
    fn push_orphan(&self, orphan: StdChild) {
        get_orphan_queue().push_orphan(orphan)
    }
}

#[must_use = "futures do nothing unless polled"]
pub(crate) struct Child {
    inner: Reaper<StdChild, GlobalOrphanQueue, Signal>,
}

impl fmt::Debug for Child {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Child")
            .field("pid", &self.inner.id())
            .finish()
    }
}

pub(crate) fn spawn_child(cmd: &mut std::process::Command) -> io::Result<SpawnedChild> {
    let mut child = cmd.spawn()?;
    let stdin = child.stdin.take().map(stdio).transpose()?;
    let stdout = child.stdout.take().map(stdio).transpose()?;
    let stderr = child.stderr.take().map(stdio).transpose()?;

    let signal = signal(SignalKind::child())?;

    Ok(SpawnedChild {
        child: Child {
            inner: Reaper::new(child, GlobalOrphanQueue, signal),
        },
        stdin,
        stdout,
        stderr,
    })
}

impl Child {
    pub(crate) fn id(&self) -> u32 {
        self.inner.id()
    }

    pub(crate) fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
        self.inner.inner_mut().try_wait()
    }
}

impl Kill for Child {
    fn kill(&mut self) -> io::Result<()> {
        self.inner.kill()
    }
}

impl Future for Child {
    type Output = io::Result<ExitStatus>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        Pin::new(&mut self.inner).poll(cx)
    }
}

#[derive(Debug)]
pub(crate) struct Pipe {
    // Actually a pipe is not a File. However, we are reusing `File` to get
    // close on drop. This is a similar trick as `mio`.
    fd: File,
}

impl<T: IntoRawFd> From<T> for Pipe {
    fn from(fd: T) -> Self {
        let fd = unsafe { File::from_raw_fd(fd.into_raw_fd()) };
        Self { fd }
    }
}

impl<'a> io::Read for &'a Pipe {
    fn read(&mut self, bytes: &mut [u8]) -> io::Result<usize> {
        (&self.fd).read(bytes)
    }
}

impl<'a> io::Write for &'a Pipe {
    fn write(&mut self, bytes: &[u8]) -> io::Result<usize> {
        (&self.fd).write(bytes)
    }

    fn flush(&mut self) -> io::Result<()> {
        (&self.fd).flush()
    }

    fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
        (&self.fd).write_vectored(bufs)
    }
}

impl AsRawFd for Pipe {
    fn as_raw_fd(&self) -> RawFd {
        self.fd.as_raw_fd()
    }
}

#[cfg(not(tokio_no_as_fd))]
impl AsFd for Pipe {
    fn as_fd(&self) -> BorrowedFd<'_> {
        unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) }
    }
}

pub(crate) fn convert_to_stdio(io: ChildStdio) -> io::Result<Stdio> {
    let mut fd = io.inner.into_inner()?.fd;

    // Ensure that the fd to be inherited is set to *blocking* mode, as this
    // is the default that virtually all programs expect to have. Those
    // programs that know how to work with nonblocking stdio will know how to
    // change it to nonblocking mode.
    set_nonblocking(&mut fd, false)?;

    Ok(Stdio::from(fd))
}

impl Source for Pipe {
    fn register(
        &mut self,
        registry: &mio::Registry,
        token: mio::Token,
        interest: mio::Interest,
    ) -> io::Result<()> {
        SourceFd(&self.as_raw_fd()).register(registry, token, interest)
    }

    fn reregister(
        &mut self,
        registry: &mio::Registry,
        token: mio::Token,
        interest: mio::Interest,
    ) -> io::Result<()> {
        SourceFd(&self.as_raw_fd()).reregister(registry, token, interest)
    }

    fn deregister(&mut self, registry: &mio::Registry) -> io::Result<()> {
        SourceFd(&self.as_raw_fd()).deregister(registry)
    }
}

pub(crate) struct ChildStdio {
    inner: PollEvented<Pipe>,
}

impl fmt::Debug for ChildStdio {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.inner.fmt(fmt)
    }
}

impl AsRawFd for ChildStdio {
    fn as_raw_fd(&self) -> RawFd {
        self.inner.as_raw_fd()
    }
}

#[cfg(not(tokio_no_as_fd))]
impl AsFd for ChildStdio {
    fn as_fd(&self) -> BorrowedFd<'_> {
        unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) }
    }
}

impl AsyncWrite for ChildStdio {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        self.inner.poll_write(cx, buf)
    }

    fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Poll::Ready(Ok(()))
    }

    fn poll_shutdown(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Poll::Ready(Ok(()))
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[io::IoSlice<'_>],
    ) -> Poll<Result<usize, io::Error>> {
        self.inner.poll_write_vectored(cx, bufs)
    }

    fn is_write_vectored(&self) -> bool {
        true
    }
}

impl AsyncRead for ChildStdio {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<()>> {
        // Safety: pipes support reading into uninitialized memory
        unsafe { self.inner.poll_read(cx, buf) }
    }
}

fn set_nonblocking<T: AsRawFd>(fd: &mut T, nonblocking: bool) -> io::Result<()> {
    unsafe {
        let fd = fd.as_raw_fd();
        let previous = libc::fcntl(fd, libc::F_GETFL);
        if previous == -1 {
            return Err(io::Error::last_os_error());
        }

        let new = if nonblocking {
            previous | libc::O_NONBLOCK
        } else {
            previous & !libc::O_NONBLOCK
        };

        let r = libc::fcntl(fd, libc::F_SETFL, new);
        if r == -1 {
            return Err(io::Error::last_os_error());
        }
    }

    Ok(())
}

pub(super) fn stdio<T>(io: T) -> io::Result<ChildStdio>
where
    T: IntoRawFd,
{
    // Set the fd to nonblocking before we pass it to the event loop
    let mut pipe = Pipe::from(io);
    set_nonblocking(&mut pipe, true)?;

    PollEvented::new(pipe).map(|inner| ChildStdio { inner })
}